Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.08.2020.0149

Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275  

Dutta, Swarnalee (Division of Biotechnology, Jeonbuk National University)
Yu, Sang-Mi (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources)
Lee, Yong Hoon (Division of Biotechnology, Jeonbuk National University)
Publication Information
The Plant Pathology Journal / v.36, no.5, 2020 , pp. 491-496 More about this Journal
Abstract
An understanding of the contribution of secondary metabolites (SMs) to the antagonistic and biocontrol activities of bacterial biocontrol agents serves to improve biocontrol potential of the strain. In this study, to evaluate the contribution of each SM produced by Pseudomonas fluorescens NBC275 (Pf275) to its antifungal and biocontrol activity, we combined in silico analysis of the genome with our previous study of transposon (Tn) mutants. Thirteen Tn mutants, which belonged to 6 biosynthetic gene clusters (BGCs) of a total 14 BGCs predicted by the antiSMASH tool were identified by the reduction of antifungal activity. The biocontrol performance of Pf275 was significantly dependent on 2,4-diacetylphloroglucinol and pyoverdine. The clusters that encode for arylpolyene and an unidentified small linear lipopeptide influenced antifungal and biocontrol activities. To our knowledge, our study identified the contribution of SMs, such as a small linear lipopeptide and arylpolyene, to biocontrol efficacy for the first time.
Keywords
antagonism; arylpolyene; mangotoxin; pyoverdine; 2,4-DAPG;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Vacheron, J., Desbrosses, G., Renoud, S., Padilla, R., Walker, V., Muller, D. and Prigent-Combaret, C. 2018. Differential contribution of plant-beneficial functions from Pseudomonas kilonensis F113 to root system architecture alterations in Arabidopsis thaliana and Zea mays. Mol. Plant-Microbe Interact. 31:212-223.   DOI
2 Zhang, W., Zhao, Z., Zhang, B., Wu, X.-G., Ren, Z.-G. and Zhang, L.-Q. 2014. Posttranscriptional regulation of 2,4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2P24. Appl. Environ. Microbiol. 80:3972-3981.   DOI
3 Zhao, H., Liu, Y.-P. and Zhang, L.-Q. 2019. In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1. Front. Microbiol. 10:544.   DOI
4 Almario, J., Bruto, M., Vacheron, J., Prigent-Combaret, C., Moenne-Loccoz, Y. and Muller, D. 2017. Distribution of 2,4-diacetylphloroglucinol biosynthetic genes among the Pseudomonas spp. reveals unexpected polyphyletism. Front. Microbiol. 8:1218.   DOI
5 Bibb, M. J. 2005. Regulation of secondary metabolism in Streptomyces. Curr. Opin. Microbiol. 8:208-215.   DOI
6 Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H. and Weber, T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47:W81-W87.   DOI
7 Dutta, S., Yu, S.-M., Jeong, S. C. and Lee, Y. H. 2019a. Highthroughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against gray mold. J. Appl. Microbiol. 128:265-279.
8 Dutta, S., Yu, S.-M., Nagendran, R., Jeong, S. C. and Lee, Y. H. 2019b. Complete genome sequencing of Pseudomonas fluorescens NBC275, a biocontrol agent against fungal pathogens of plants and insects. Korean J. Microbiol. 55:157-159.   DOI
9 Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., Takemoto, J. Y. and Suzuki, A. 1992. Structures and stereochemistry of three phytotoxins, syringomycin, syringotoxin and syringostatin, produced by Pseudomonas syringae pv. syringae. J. Chem. Soc. Perkin Trans. 1:1149-1157.
10 Gross, H. and Loper, J. E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26:1408-1446.   DOI
11 Li, M. H. T., Ung, P. M. U., Zajkowski, J., Garneau-Tsodikova, S. and Sherman, D. H. 2009. Automated genome mining for natural products. BMC Bioinformatics 10:185.   DOI
12 Grgurina, I., Bensaci, M., Pocsfalvi, G., Mannina, L., Cruciani, O., Fiore, A., Fogliano, V., Sorensen, K. N. and Takemoto, J. Y. 2005. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob. Agents Chemother. 49:5037-5045.   DOI
13 Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153.   DOI
14 Jordan, I. K., Kondrashov, F. A., Adzhubei, I. A., Wolf, Y. I., Koonin, E. V., Kondrashov, A. S. and Sunyaev, S. 2005. A universal trend of amino acid gain and loss in protein evolution. Nature 433:633-638.   DOI
15 Li, X.-Z., Nikaido, H. and Poole, K. 1995. Role of mexA-mexBoprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1948-1953.   DOI
16 Magnusson, J. and Schnurer, J. 2001. Lactobacillus coryneformis subsp. coryneformis strains Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67:1-5.   DOI
17 Mandryk-Litvinkovich, M. N., Muratova, A. A., Nosonova, T. L., Evdokimova, O. V., Valentovich, L. N., Titok, M. A. and Kolomiets, E. I. 2017. Molecular genetic analysis of determinants defining synthesis of 2,4-diacetylphloroglucinol by Pseudomonas brassicacearum BIM B-446 bacteria. Appl. Biochem. Microbiol. 53:31-39.   DOI
18 Masschelein, J., Jenner, M. and Challis, G. L. 2017. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat. Prod. Rep. 34:712-783.   DOI
19 Noinaj, N., Guillier, M., Barnard, T. J. and Buchanan, S. K. 2010. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64:43-60.   DOI
20 Mataragas, M., Metaxopoulous, J. and Drosinos, E. H. 2002. Characterization of two bacteriocins produced by Leuconostocmes enterioides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages. World J. Microbiol. Biotechnol. 18:847-856.   DOI
21 Ravel, J. and Cornelis, P. 2003. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol. 11:195-200.   DOI
22 Redondo-Nieto, M., Barret, M., Morrissey, J., Germaine, K., Martinez-Granero, F., Barahona, E., Navazo, A., Sanchez-Contreras, M., Moynihan, J. A., Muriel, C., Dowling, D., O’Gara, F., Martin, M. and Rivilla, R. 2013. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14:54.   DOI
23 Rodriguez, R. L. M. and Konstantinidis, K. T. 2016. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:e1900v1.
24 Schalk, I. J. and Guillon, L. 2013. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ. Microbiol. 15:1661-1673.   DOI
25 Skinnider, M. A., Dejong, C. A., Rees, P. N., Johnston, C. W., Li, H., Webster, A. L. H., Wyatt, M. A. and Magarvey, N. A. 2015. Genomes to natural products Prediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res. 43:9645-9662.   DOI
26 Tian, T., Wu, X.-G., Duan, H.-M. and Zhang, L.-Q. 2010. The resistance-nodulation-division efflux pump EmhABC influences the production of 2,4-diacetylphloroglucinol in Pseudomonas fluorescens 2P24. Microbiology 156:39-48.   DOI