• 제목/요약/키워드: Annealed silica

검색결과 36건 처리시간 0.024초

슬러리 Modification 에 대한 연구 (Methodological Study for Recycle of Chemical Mechanical Polishing Slurry)

  • 박성우;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.567-568
    • /
    • 2006
  • To investigate the recycle possibility of slurry for the oxide-chemical mechanical polishing (oxide-CMP) application, three kinds of retreated methods were introduced as follows: First, the effects on the addition of silica abrasives and the diluted silica slurry (DSS) on CMP performances were investigated. Second, the characteristics of mixed abrasive slurry (MAS) using non-annealed and annealed alumina ($Al_2O_3$) powder as an abrasive added within DSS were evaluated to achieve the improvement of removal rates (RRs) and within-wafer non-uniformity (WIWNU%). Third, the oxide-CMP wastewater was examined in order to evaluate the possible ways of reusing it. And then, we have discussed the CMP characteristics of silica slurry retreated by mixing of original slurry and used slurry (MOS).

  • PDF

Effect of Silica Content on the Dielectric Properties of Epoxy/Crystalline Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.322-325
    • /
    • 2012
  • Crystalline silica was synthesized by annealing amorphous silica at $1,300^{\circ}C$ or $1,400^{\circ}C$ for various times, and the crystallinity was estimated by X-ray diffraction (XRD) analysis. In order to prepare a low dielectric material, epoxy/crystalline silica composites were prepared, and the effect of silica content on the dielectric properties was studied under various functions of frequency and ambient temperature. The dielectric constant decreased with increasing crystalline silica content in the epoxy composites, and it also decreased with increasing frequency. At 120 Hz, the value of 5 wt% silica decreased by 0.25 compared to that of 40 wt% silica, and at 23 kHz, the value of 5 wt% silica decreased by 0.23 compared to that of 40 wt% silica. The value increased with increasing ambient temperature.

필터링에 의한 실리카 슬러리 연마제의 재활용에 관한 연구 (A Study on the Recycling of Silica Slurry Abrasives by Filtering)

  • 서용진;박성우;이우선
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권11호
    • /
    • pp.551-555
    • /
    • 2004
  • In this paper, in order to reduce the high COO (cost of ownership) and COC (cost of consumables), we have collected the silica abrasive powders by filtering method after subsequent CMP (chemical mechanical polishing) process for the purpose of abrasives recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size distribution and FE-SEM (field emission-scanning electron microscope) measurements of abrasive powders. It was annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable rate of removal and good planarity with commercial products. Consequently we can expect the saving of high cost slurry.

입계상 조성이 탄화규소의 미세구조와 기계적 특성에 미치는 영향 (Effect of Grain Boundary Composition on Microstructure and Mechanical Properties of Silicon Carbide)

  • 김재연;김영욱;이준근
    • 한국세라믹학회지
    • /
    • 제35권9호
    • /
    • pp.911-916
    • /
    • 1998
  • By using {{{{ { { {Y }_{3 }Al }_{5 }O }_{12 } }} (YAG) and SiO2 as sintering additives the effect of the composition of sintering ad-ditives on microstructure and mechanical properties of the hog-pressed and subsequently annealed SiC ma-terials were investigated. Microstructures of sintered and annealed materials were strongly dependent onthe composition of sintering additives. The average diameter and volume fraction of elongated grains in an-nealed materials increased with the SiO2/YAg ratio while the fracture toughness increased with the SiO2/YAg ratio. The average MPa.{{{{ { m}^{1/2 } }} respectively. Typical strength and fracture toughness of an annealed material with SiO2/YAg ra-tionof 0.67 were 371 MPa and 5.6 MPa.{{{{ { m}^{1/2 } }} respectively.

  • PDF

니켈 실리사이드의 열안정성에 대한 실리카 상부막과 코발트 중간막의 영향 (Effect of silica top layer and Co interlayer on the thermal stability of nickel silicide)

  • 한길진;조유정;김영철;오순영;김용진;이원재;이희덕
    • 반도체디스플레이기술학회지
    • /
    • 제4권2호
    • /
    • pp.7-10
    • /
    • 2005
  • [ $SiO_{2}$ ] or SiON is usually deposited and annealed after formation of silicide in real transistor fabrication processes. Nickel silicide and nickel silicide with Co interlayer were annealed at 650$^{\circ}C$ for 30 min with silica top layer in this study to investigate its thermal stability. SEM, XPS, and FPP(four point probe) were employed for the investigation. Nickel silicide with Co interlayer showed improved thermal stability. Co interlayer seems to play a key role to the stability of nickel silicide.

  • PDF

탈이온수로 희석된 실리카 슬러리에 알루미나 연마제가 첨가된 혼합 연마제 슬러리의 CMP 특성 (Chemical Mechanical Polishing Characteristics of Mixed Abrasive Slurry by Adding of Alumina Abrasive in Diluted Silica Slurry)

  • 서용진;박창준;최운식;김상용;박진성;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제16권6호
    • /
    • pp.465-470
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process has been widely used for the global planarization of multi-layer structures in semiconductor manufacturing. The CMP process can be optimized by several parameters such as equipment, consumables (pad, backing film and slurry), process variables and post-CMP cleaning. However, the COO(cost of ownership) is very high, because of high consumable cost. Especially, among the consumables, the slurry dominates more than 40 %. In this paper, we have studied the CMP characteristics of diluted silica slurry by adding of raw alumina abrasives and annealed alumina abrasives. As an experimental result, we obtained the comparable slurry characteristics compared with original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질 (Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin)

  • 임헌진;이홍림
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF

Thermal Instability of La0.6Sr0.4MnO3 Thin Films on Fused Silica

  • Sun, Ho-Jung
    • 한국재료학회지
    • /
    • 제21권9호
    • /
    • pp.482-485
    • /
    • 2011
  • $La_{0.6}Sr_{0.4}MnO_3$ (LSMO) thin films, which are known as colossal magnetoresistance materials, were prepared on fused silica thin films by conventional RF magnetron sputtering, and the interfacial reactions between them were investigated by rapid thermal processing. Various analyses, namely, X-ray diffraction, transmission electron microscopy combined with energy adispersive X-ray spectrometry, and secondary ion mass spectrometry, were performed to explain the mechanism of the interfacial reactions. In the case of an LSMO film annealed at $800^{\circ}C$, the layer distinction against the underplayed $SiO_2$ was well preserved. However, when the annealing temperature was raised to $900^{\circ}C$, interdiffusion and interreaction occurred. Most of the $SiO_2$ and part of the LSMO became amorphous silicate that incorporated La, Sr, and Mn and contained a lot of bubbles. When the annealing temperature was raised to $950^{\circ}C$, the whole stack became an amorphous silicate layer with expanded bubbles. The thermal instability of LSMO on fused silica should be an important consideration when LSMO is integrated into Si-based solid-state devices.

왕겨를 통한 실리카 나노스페어의 제작과 특성 (Fabrication and property of silica nanospheres via rice-husk)

  • 임유빈;곽도환;;이현철;김영순;양오봉;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.619-619
    • /
    • 2009
  • Recently, silica nanostructures are widely used in various applicationary areas such as chemical sensors, biosensors, nano-fillers, markers, catalysts, and as a substrate for quantum dots etc, because of their excellent physical, chemical and optical properties. Additionally, these days, semiconductor silica and silicon with high purity is a key challenge because of their metallurgical grade silicon (MG-Si) exhibit purity of about 99% produced by an arc discharge method with high cast. Tremendous efforts are being paid towards this direction to reduce the cast of high purity silicon for generation of photovoltaic power as a solar cell. In this direction, which contains a small amount of impurities, which can be further purified by acid leaching process. In this regard, initially the low cast rice-husk was cultivated from local rice field and washed well with high purity distilled water and were treated with acid leaching process (1:10 HCl and $H_2O$) to remove the atmospheric dirt and impurity. The acid treated rice-husk was again washed with distilled water and dried in an oven at $60^{\circ}C$. The dried rice-husk was further annealed at different temperatures (620 and $900^{\circ}C$) for the formation of silica nanospheres. The confirmation of silica was observed by the X-ray diffraction pattern and X-ray photoelectron spectroscopy. The morphology of obtained nanostructures were analyzed via Field-emission scanning electron microscope(FE-SEM) and Transmission electron microscopy(TEM) and it reveals that the size of each nanosphares is about 50-60nm. Using the Inductively coupled plasma mass spectrometry(ICP-MS), Silica was analyzed for the amount of impurities.

  • PDF

XRD 패턴에 따른 유무기복합 화합물의 특성 (Properites of Inorganic Hybrid Silica Materials according to the XRD patterns)

  • 오데레사;고유신;김경식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.995-998
    • /
    • 2003
  • This paper reports the correlation between dielectric constant and degree of amorphism of the hybrid type Si-O-C thin films. Si-O-C thin films were deposited by high density plasma chemical vapor deposition using bistrimethyl- silylmethane(BTMSM, $H_{9}$C$_3$-Si-C $H_2$-Si-C$_3$ $H_{9}$) and oxygen precursors with various flow rate ratio. As-deposited film and annealed films at 40$0^{\circ}C$ were analyzed by XRD. The Si-O-C thin films were amorphous from XRD patterns. For quantitative analysis, the diffraction pattern of the samples was transformed to radial distribution function by Fourier analysis, and then compared with each other. The degree of amorphism of annealed films was higher than that of as-deposited ones. The dielectric constant varied in accordance with flow rate ratio of precursors. The lowest dielectric constant was obtained from the as-deposited film which has the highest degree of amorphism after annealing.

  • PDF