• Title/Summary/Keyword: Anisotropic Coefficient

Search Result 99, Processing Time 0.026 seconds

A Noisy-Robust Approach for Facial Expression Recognition

  • Tong, Ying;Shen, Yuehong;Gao, Bin;Sun, Fenggang;Chen, Rui;Xu, Yefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2124-2148
    • /
    • 2017
  • Accurate facial expression recognition (FER) requires reliable signal filtering and the effective feature extraction. Considering these requirements, this paper presents a novel approach for FER which is robust to noise. The main contributions of this work are: First, to preserve texture details in facial expression images and remove image noise, we improved the anisotropic diffusion filter by adjusting the diffusion coefficient according to two factors, namely, the gray value difference between the object and the background and the gradient magnitude of object. The improved filter can effectively distinguish facial muscle deformation and facial noise in face images. Second, to further improve robustness, we propose a new feature descriptor based on a combination of the Histogram of Oriented Gradients with the Canny operator (Canny-HOG) which can represent the precise deformation of eyes, eyebrows and lips for FER. Third, Canny-HOG's block and cell sizes are adjusted to reduce feature dimensionality and make the classifier less prone to overfitting. Our method was tested on images from the JAFFE and CK databases. Experimental results in L-O-Sam-O and L-O-Sub-O modes demonstrated the effectiveness of the proposed method. Meanwhile, the recognition rate of this method is not significantly affected in the presence of Gaussian noise and salt-and-pepper noise conditions.

FLIP CHIP ON ORGANIC BOARD TECHNOLOGY USING MODIFIED ANISOTROPIC CONDUCTIVE FILMS AND ELECTROLESS NICKEL/GOLD BUMP

  • Yim, Myung-Jin;Jeon, Young-Doo;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1999
  • Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances resulting in a high performance and cost-competitive Packaging method. This paper describes the investigation of alternative low cost flip-chip mounting processes using electroless Ni/Au bump and anisotropic conductive adhesives/films as an interconnection material on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed and characterized in mechanical and metallurgical point of view. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with $Ni_3$P precipitation above $300^{\circ}C$ causes an increase of hardness and an increase of the intrinsic stress resulting in a reliability limitation. As an interconnection material, modified ACFs composed of nickel conductive fillers for electrical conductor and non-conductive inorganic fillers for modification of film properties such as coefficient of thermal expansion(CTE) and tensile strength were formulated for improved electrical and mechanical properties of ACF interconnection. The thermal fatigue life of ACA/F flip chip on organic board limited by the thermal expansion mismatch between the chip and the board could be increased by a modified ACA/F. Three ACF materials with different CTE values were prepared and bonded between Si chip and FR-4 board for the thermal strain measurement using moire interferometry. The thermal strain of ACF interconnection layer induced by temperature excursion of $80^{\circ}C$ was decreased with decreasing CTEs of ACF materials.

  • PDF

FE Simulation of Axial Crushing Test for AZ31 Tube Considering Tension-Compression Asymmetry (압축-인장 비대칭을 고려한 AZ31 튜브의 압괴해석)

  • Yoon, Jong-Hun;Lee, Jung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.997-1002
    • /
    • 2012
  • With the increasing demand for lightweight materials to reduce fuel consumption, especially in the transportation industry, magnesium alloys are being widely studied. However, there are several limitations to the large-scale application of magnesium alloys in a structure because of their low formability and strong anisotropy. In order to take into account both the strong anisotropy and tension-compression asymmetry of AZ31 sheet alloy, the Cazacu-Plunkett-Barlat yield criterion (Cazacu, 2006) was adopted in material modeling. The variation of the anisotropic coefficients that describe the yield surface evolution of AZ31 is optimized using an interpolation function based on specific calibration results. It generates continuous yield surfaces, which makes it possible to describe different hardening rates in tension and compression as well as the tension-compression asymmetry of magnesium alloys. The performance of the CPB06 yield criterion for simulating an axial crushing test was tested and compared with that of the Hill (1948) yield criterion.

Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites

  • Alexander, Bobyl;Sang-Сheol, Nam;Jung-Hoon, Song;Alexander, Ivanishchev;Arseni, Ushakov
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.438-452
    • /
    • 2022
  • For cuboid and ellipsoid crystallites of LiFePO4 powders, by X-ray diffraction (XRD) and microscopic (TEM) studies, it is possible to determine the anisotropic parameters of the crystallite size distribution functions. These parameters were used to describe the cathode rate capability within the model of averaging the diffusion coefficient D over the length of the crystallite columns along the [010] direction. A LiFePO4 powder was chosen for testing the developed model, consisting of big cuboid and small ellipsoid crystallites (close to them). When analyzing the parts of big and small rate capabilities, the fitting values D = 2.1 and 0.3 nm2/s were obtained for cuboids and ellipsoids, respectively. When analyzing the results of cyclic voltammetry using the Randles-Sevcik equation and the total area of projections of electrode crystallites on their (010) plane, slightly different values were obtained, D = 0.9 ± 0.15 and 0.5 ± 0.15 nm2/s, respectively. We believe that these inconsistencies can be considered quite acceptable, since both methods of determining D have obvious sources of error. However, the developed method has a clearly lower systematic error due to the ability to actually take into account the shape and statistics of crystallites, and it is also useful for improving the accuracy of the Randles-Sevcik equation. It has also been demonstrated that the shape engineering of crystallites, among other tasks, can increase the cathode capacity by 15% by increasing their size correlation coefficients.

A Study on the Thermo-mechanical Characteristics and Adhesion Reliability of Anisotropic Conductive Films Depend on the Curing Methods of Epoxy Resins (에폭시 레진의 경화방법에 따른 이방성 전도필름의 접합신뢰성 및 열적기계적 특성 변화)

  • Gil, Man-Seok;Seo, Kyoung-Won;Kim, Jae-Han;Lee, Jong-Won;Jang, Eun-Hee;Jeong, Do-Yeon;Kim, Su-Ja;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • To improve the curing method of anisotropic conductive film (ACF) at low temperature, it was studied to replace the thermal latent curing agent of imidazole compounds by the curing agent of cationically initiating type. Thermo-mechanical properties such as glass transition temperature, storage modulus, and coefficient of thermal expansion were investigated for the analysis of curing behavior. The reliability of ACF were observed in thermal cycle and high temperature-high humidity test. ACF using cationic initiator showed faster curing, lower CTE, and higher $T_g$ than the case of using imidazole curing agent, which is important for the high temperature stability. Furthermore, ACF using cationic initiator maintained a stable contact resistance in reliability test, although it was cured at low temperature and fast rate. With these results, it was confirmed that the curing method of epoxy had great effect on thermo-mechanical properties and reliability of ACF.

Micro-crack Detection in Polycrystalline Solar Cells using Improved Anisotropic Diffusion Model (개선된 비등방 확산 모델을 이용한 다결정형 솔라셀의 마이크로 크랙 검출)

  • Ko, JinSeok;Rheem, JaeYeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.183-190
    • /
    • 2013
  • In this paper, we propose an improved anisotropic diffusion model for micro-crack detection in heterogeneously textured surface of polycrystalline solar wafers. Due to the nature of the image sensor, the gray-level of the diagonal micro-crack is non-uniform. Thus, the conventional algorithms can't fully detect diagonal micro-cracks when the number of iteration is not enough. However, the increasing of the iteration number leads to increase computation time and detects micro-crack thicker than the original micro-crack. In order to overcome this drawback, we use the gradient of north, south, east, and west directions as well as extended directions. To calculate the diffusion coefficients, we compare the gradients of conventional directions and extended directions and apply the larger gradient values to the coefficient function. This is because the proposed method reflects the information of diagonal micro-crack. Comparing to Tsai et al.'s and Ko and Rheem's, the proposed algorithm shows superior efficiency in detecting the diagonal micro-cracks with less iterations in the images of polycrystalline solar wafers. In addition, it also shows that the thickness of segmented micro-crack is similar to the orignal micro-crack.

Evaluating Hydrologic Behavior of Hydrology Simulation using Time Area (HYSTAR) Model through Sensitivity Analysis (민감도 분석을 통한 분산형 연속 강우유출모형(HYSTAR)의 수문학적 거동 평가)

  • Her, Younggu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.41-54
    • /
    • 2015
  • 시간-면적 기법을 이용해 유역의 수문과정을 묘사하는 분산형 (distributed) 연속 (continuous) 강우유출모형인 HYSTAR의 거동특성과 주요 매개변수에 대한 민감도를 분석하였다. 유역의 수문조건에 따른 모형거동의 변화를 분석하기 위해 연속되는 4개의 개별 강우사상에 대한 민감도를 조사하고 비교하였다. 또한, 매개변수의 상호작용이 민감도 분석결과에 미치는 영향을 파악하기 위해 두 가지 서로 다른 기법 (one-factor-at-a-time 과 all-factor-at-a-time 방법)을 이용하여 산정된 민감도를 비교하였다. 분석결과, 모형의 직접유출량, 첨두유량 및 도달시간 모의결과는 유출곡선번호 (curve number)에 가장 민감하게 반응하는 것으로 나타났으며, 토양의 깊이, van Genuchten 식의 매개변수, 작물계수에 큰 영향을 받았다. 한편, 모의된 기저유출량은 토양의 깊이를 비롯하여 van Genuchten 식의 매개변수, 작물계수 (crop coefficient), 이방성계수 (anisotropic coefficient), 유출곡선번호의 변화에 민감하였다. 매개변수에 대한 민감도는 분석에 이용된 강우사상에 따라 다르게 나타났으며, 유역의 토양수분조건에 따라 다르게 거동하는 모형의 중요한 특성을 잘 반영하였다. 두 가지 서로 다른 기법을 이용한 민감도 분석결과는 모의된 직접유출량 및 기저유출량의 변화가 매개변수의 상호작용에 의해 제한될 수 있음을 보여 주었다. 본 연구는 HYSTAR 모형의 매개변수에 대한 민감도 분석을 통해서 해당 모형의 거동을 정량적으로 보여주었고, 이를 통해 모형의 건전성 (soundness)을 입증할 수 있는 하나의 근거를 제시하였다. 본 연구결과는 향후 HYSTAR 모형을 이용한 수문분석 시 보정을 위한 매개변수 선정에 활용될 수 있을 것으로 사료된다. 또한, 본 연구결과에서 나타난 민감도의 수문조건 (또는 선정된 강우사상)에 대한 의존성은 연속유출 모형의 민감도 분석을 위한 강우 사상 선정 및 민감도 분석결과의 해석에 유용한 정보를 제공할 수 있을 것으로 기대된다.

Improvement in the Quality of Ultrasonographic Images Using Wavelet Conversion and a Boundary Detection Filter (Wavelet 변환과 경계선 검출 필터를 이용한 초음파 영상의 화질증대)

  • Han, Dong-Kyun;Rhim, Jae-Dong;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • The present study proposed a method that dissolves ultrasonographic images into multiple resolutions using wavelet conversion and a boundary detection filter and improves the quality of ultrasonographic images through boundary detection filtering. In order to reduce noises and strengthen edges, the proposed method adjusted selectivity coefficient by area step by step from a low resolution image obtained from wavelet converted images to a high resolution image and performed edge filtering in consideration of direction. Through this method, we generated a selective low pass filtering effect in areas except edges by decreasing the wavelet coefficient for pixels in spot areas, improved continuity by smoothing edges in the tangential direction, and enhanced contrast by thinning in the normal direction. Through an experiment, we compared the filtering method using a non linear anisotropic expansion model and the filtering method using wavelet contraction structure in single resolution.

  • PDF

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation (열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구)

  • Hong, Seok Min;Lee, Jang Il;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar (이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.