A Study on the Thermo-mechanical Characteristics and Adhesion Reliability of Anisotropic Conductive Films Depend on the Curing Methods of Epoxy Resins

에폭시 레진의 경화방법에 따른 이방성 전도필름의 접합신뢰성 및 열적기계적 특성 변화

  • Received : 2009.10.05
  • Accepted : 2010.02.12
  • Published : 2010.05.25

Abstract

To improve the curing method of anisotropic conductive film (ACF) at low temperature, it was studied to replace the thermal latent curing agent of imidazole compounds by the curing agent of cationically initiating type. Thermo-mechanical properties such as glass transition temperature, storage modulus, and coefficient of thermal expansion were investigated for the analysis of curing behavior. The reliability of ACF were observed in thermal cycle and high temperature-high humidity test. ACF using cationic initiator showed faster curing, lower CTE, and higher $T_g$ than the case of using imidazole curing agent, which is important for the high temperature stability. Furthermore, ACF using cationic initiator maintained a stable contact resistance in reliability test, although it was cured at low temperature and fast rate. With these results, it was confirmed that the curing method of epoxy had great effect on thermo-mechanical properties and reliability of ACF.

이방성 전도필름(ACF)의 경화방법을 개선하기 위하여 이미다졸계 경화제 대신에 저온에서도 경화가 빠른 열잠재성 양이온 개시제형 경화제를 사용한 에폭시 수지의 경화를 연구하였다. 경화특성의 분석을 위해 유리전이온도, 저장모듈러스, 열팽창계수를 포함한 열적기계적 특성을 조사하였으며 열사이클, 고온고습 신뢰성을 관찰하였다. 열잠재성 양이온 개시제형 경화제를 사용한 ACF가 이미다졸계 경화제를 사용한 경우보다 경화속도는 빨랐으며, 열팽창계수는 낮았고, $T_g$가 높아서 고온안정성도 우수하였다. 또 낮은 온도와 빠른 경화에도 불구하고 안정적인 접속 저항을 유지하여 높은 신뢰성을 나타내었다. 본 연구를 통하여 에폭시 경화방법은 ACF의 열적기계적 특성과 신뢰성에 큰 영향을 미치는 중요한 인자임을 확인하였다.

Keywords

References

  1. C. Wang and P. J. Bos, Displays, 25, 187 (2004). https://doi.org/10.1016/j.displa.2004.09.010
  2. M. J. Yim and K. W. Paik, Int. J. Adhes. Adhes., 26, 304 (2006). https://doi.org/10.1016/j.ijadhadh.2005.04.004
  3. K. S. Moon, J. Wu, and C. P. Wong, IEEE Trans. Comp. Packag. Technol., 26, 375, (2003). https://doi.org/10.1109/TCAPT.2003.815101
  4. J. M. Kim, J. of KWJS, 25, 133 (2007).
  5. M. J. Yim, J. Electron. Mater., 33, 76 (2004). https://doi.org/10.1007/s11664-004-0297-1
  6. Y. Li and C. P. Wong, Mater. Sci. Eng. R, 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  7. S. Asai, J. Appl. Polym. Sci., 56, 769 (1995). https://doi.org/10.1002/app.1995.070560702
  8. R. S Bauer, Epoxy Resin Chemistry, American Chemical Society, Washington D.C., 1979.
  9. C. A. May, Epoxy Resin, Marcel Dekker, New York, 1988.
  10. S. V. Rosato, D. P. Dimattia, and D. V. Rosato, Designing with Plastics and Composites, Nostrand Reinhold, New York, 1991.
  11. J. V. Crivello and J. H. W. Lam, J. Polym. Sci., Polym. Chem. Ed., 18, 1021 (1980). https://doi.org/10.1002/pol.1980.170180321
  12. J. Gu, S. C. Narang, and E. L. Pearce, J. Appl. Polym. Sci., 30, 2997 (1985). https://doi.org/10.1002/app.1985.070300722
  13. S. J. Park, M. S. Cho, and J. R. Lee, Polymer(Korea), 23, 413 (1999).
  14. R. L. Wheeler, The Epoxy Resin Formulators Training Manual, The Society of The Plastics Industry, New York, 1984.
  15. S. J. Park and H. C. Kim, J. Polym. Sci. Part B: Polym. Phys., 39, 121 (2001). https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  16. J. S. Hwang, M. J. Yim, and K. W. Paik, J. Electron. Mater., 35, 1722 (2006). https://doi.org/10.1007/s11664-006-0225-7
  17. T. Lijima, N. Yoshioka, and M. Tomoi, Eur. Polym. J., 28, 573 (1992). https://doi.org/10.1016/0014-3057(92)90025-W
  18. Z. Lai and J. Liu, IEEE Trans. Comp. Pack. Manuf. Tech. Part B, 19, 644 (1996). https://doi.org/10.1109/96.533908