DOI QR코드

DOI QR Code

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구

  • Received : 2013.12.09
  • Accepted : 2014.01.19
  • Published : 2014.04.01

Abstract

Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

전자장치들의 소형화 및 박형화가 됨에 따라 전자장치의 수명과 직결되는 열적문제가 중요해지고 있다. 열적문제를 해결하기위해 열확산과 단열을 통한 열적 안정성 연구가 필요하다. 허니컴 샌드위치 평판은 이방성의 열전도계수를 갖는다. 허니컴 샌드위치 평판이 적용된 시스템에 대해 온도분포와 열변형을 해석하기 위하여 열 및 탄성 물성치가 필요하다. 본 연구에서는 허니컴 코어의 크기, 두께 그리고 구성된 재료에 따라 허니컴 샌드위치 평판의 물성치가 변하기 때문에 허니컴 샌드위치 평판의 열전도계수, 열팽창계수, 탄성계수, 전단탄성계수, 푸아송비와 같은 열 및 탄성 물성치를 예측하였다.

Keywords

References

  1. Park, J. W., Shin, D. C. and Park, S. H., 2011, "Large-Area OLED Lightings and Their Applications," Semicond. Sci. Technol., Vol. 26, No. 034002, p. 9.
  2. Park, J. W., Lee, J. H. and Noh, Y. Y., 2012, "Optical and Thermal Properties of Large-area OLED Lightings with Metallic Grids," Organic Electronics, Vol. 13, pp. 184-194. https://doi.org/10.1016/j.orgel.2011.10.024
  3. Marchetti, M. and Morganti, F., 1983, "Prediction of Thermal Expansion Coefficient of Sanwiches Using Finite Elements Methods Validated by Experimental Test Results," Acta Astronautica, Vol. 10, No. 5-6, pp. 409-427. https://doi.org/10.1016/0094-5765(83)90091-7
  4. Chen, D. H., 2011, "Bending Deformation of Honeycomb Consisting of Regular Hexagonal," Composite Structures, Vol. 93, pp. 736-746. https://doi.org/10.1016/j.compstruct.2010.08.006
  5. Schwingshackl, C. W., Alglietti, G. S. and Cunningham, P. R., 2006, "Determination of Honeycomb Material Properties: Existing Theories and an Alternative Dynamic Approach," Journal of Aerospace Engineering, Vol.19, pp. 177-183. https://doi.org/10.1061/(ASCE)0893-1321(2006)19:3(177)
  6. Liu, B., Feng, X. and Zhang, S. M., 2009, "The Effective Young's Modulus of Composites Beyond the Voigt Estimation due to the Poisson Effect," Composites Science and Technology, Vol. 69, pp. 2198-2204. https://doi.org/10.1016/j.compscitech.2009.06.004