DOI QR코드

DOI QR Code

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar

이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구

  • Yi, Seong-Tae (Department of Civil and Environmental Engineering, Inha Technical College)
  • Received : 2021.12.08
  • Accepted : 2021.12.23
  • Published : 2022.02.28

Abstract

In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.

이 연구에서는 FRP 보강근과 콘크리트의 횡방향 열팽창 거동이 콘크리트 피복두께에 미치는 영향을 살펴보기 위해 온도 20℃를 기준으로 -70℃~80℃까지 변화시켜가며, 콘크리트의 거동을 해석적으로 검토하였다. 이를 위해 서로 다른 FRP 보강근의 지름과 피복 두께를 가지는 FRP 보강근 콘크리트를 대상으로 이론적 탄성해석과 비선형 유한요소해석을 수행하였다. 그 결과, 음의 온도차이에서는 콘크리트가 압축을 받아 이론적 변형율 결과와 유한요소결과가 유사하였지만, 양의 온도차이에서는 콘크리트에 인장응력이 발생하고 더 나아가 균열이 발생하여 이론적 결과보다 1.2~1.4 배 큰 변형률을 나타내었다. 또한 FRP 보강근의 지름과 콘크리트의 피복두께 비(c/db)가 균열의 발생과 밀접한 연관이 있으며, 보강근의 지름에 비하여 피복두께가 부족할 경우 균열이 발생하여 구조물의 사용성이 저하되었다. FRP 보강근의 횡방향 열팽창계수는 콘크리트보다 3배 이상 크기 때문에, 설계 시 이에 대한 고려가 필요하다고 판단되었다.

Keywords

Acknowledgement

이 논문은 2021년도 인하공업전문대학 학술연구시업 지원에 의하여 연구되었음.

References

  1. ACI 440.1R-15 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute, Farmington Hills, MI, USA.
  2. Aiello, M. A., Focacci, F., and Nanni, A. (2001). Effects of Thermal Loads on Concrete Cover of Fiber Reinforced Polymer Reinforced Elements: Theoretical and experimental analysis. ACI Materials Journal, 98(4), 332-339.
  3. Carreira, D. J. and Chu, K. H. (1985) Stress-strain Relationship for Plain Concrete in Compression. ACI Journal, American Concrete Institute, 82(6), 797-804.
  4. Cho J. S., Kim M. S., Lee Y. H., and Kim H. C. (2011) Experimental Study on Shear Strength of Concrete Deep Beam Reinforced FRP Bars. Journal of the Computational Structural Engineering Institute of Korea, 24(1), 23-32
  5. Choi D. U., Chun S. C., and Ha S. S. (2009) Splice Length of GFRP Rebars based on Flexural Tests of Unconfined RC Members. Journal of the Korea Concrete Institute, 21(1), 65-74 https://doi.org/10.4334/JKCI.2009.21.1.065
  6. Gang, H. G. and Kwak, H. G. (2017) A Strain Rate Dependent Orthotropic Concrete Material Model. International Journal of Impact Engineering, 103(1), 211-224 https://doi.org/10.1016/j.ijimpeng.2017.01.027
  7. Grassl, P. and Rempling, R. (2008) A Damage-plasticity Interface Approach to the Meso-scale Modelling of Concrete Subjected to Cyclic Compressive Loading. Engineering Fracture Mechanics, 75(16), 4804-4818. https://doi.org/10.1016/j.engfracmech.2008.06.005
  8. Hordijk D. A. (1992) Tensile and Tensile Fatigue Behaviour of Concrete; Experiments, Modelling and Analyses. Heron, 37(1), 1-79.
  9. Jankowiak, T. and Lodygowski, T. (2005) Identification of Parameters of Concrete Damage Plasticity Constitutive Model. Foundation of civil and environmental engineering, No. 6, Poznan university of technology, Poland, 53-69.
  10. Kim S. M. and Abu Al-Rub R. K. (2011) Meso-scale Computational Modeling of the Plastic-damage Response of Cementitious Composites. Cement and Concrete Research, 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002
  11. Korea Concrete Institute(KCI) (2021) The Korean Concrete Structure Design Code, Korea Concrete Institute, Korea
  12. Lee S. Y. and Son, B. J., (2021) Study of Design of Concrete Beam Reinforced with FRP Bars. Journal of Korea Society of Advanced Composite Structure, 12(5), 44-53 https://doi.org/10.11004/kosacs.2021.12.5.044
  13. Lee, H. J., Moon J. H., Yang K. H., and Kim, S. J. (2018) Flexural Behavior of Beams Reinforced with Longitudinal GFRP Bars in Exterior Beam-column Connection. Journal of the Korea Concrete Institute, 31(3), 211-220 https://doi.org/10.4334/jkci.2019.31.3.211
  14. Lopez, C. M., Carol, I., and Aguado, A. (2008) Meso-structural Study of Concrete Fracture using Interface Elements. II: Compression, Biaxial and Brazilian Test. Materials and Structures, 41(3), 601-620. https://doi.org/10.1617/s11527-007-9312-3
  15. Masmoudi, R., Zaidi A., and Gerard, P. (2005) Transverse Thermal Expansion of FRP Bars Embedded in Concrete. Journal of Composites for Construction, 9(5), 377-387 https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(377)
  16. Matthy, S., De Shutter, G., and Taerwe, L. (1996) Influence of Transverse Thermal Expansion of FRP Reinforcement on the Critical Concrete Cover. 2nd International Conference on Advanced Composite Materials in Bridges and Structures, ACMBS-II, Montreal, 665-672.
  17. Moon D. Y. and Oh H. S. (2011) The Combined Effect of Concrete Environment and High Temperature on Interlaminar Shear Strength of FRP Reinforcement. Journal of the Korea Concrete Institute, 23(6), 749-746 https://doi.org/10.4334/JKCI.2011.23.6.749
  18. Park C. G., Won J. P., and Cha, S. S. (2009) Bond Properties of Carbon Fiber Reinforced Polymer Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers. Journal of the Korea Concrete Institute, 21(3), 275-282 https://doi.org/10.4334/JKCI.2009.21.3.275
  19. Prakash, A., Anandavalli, N., Madheswaran, C. K., Rajasankar, J., and Lakshmanan, N. (2011) Three Dimensional FE Model of Stud Connected Steel-concrete Composite Girders subjected to Monotonic Loading. International Journal of Mechanics and Applications, 1(1), 1-11. https://doi.org/10.5923/j.mechanics.20110101.01
  20. Smith, M. (2009). ABAQUS/Explicit User's Manual, Version 6.9. Dassault Systemes Simulia Corp.
  21. Rahman, H. A., Kingsley, C. Y., and Taylor, D. A. (1995) Thermal Stress in FRP Reinforced Concrete. Proceeding Annual Conference of the Canadian Society for Civil Engineering, CSCE, Ottawa, 605-614.
  22. Rhee I. K. and Kim W (2006) Effects of numerical modeling on concrete heterogeneity. Journal of Korea Concrete Institute, 18(2), 189-198. https://doi.org/10.4334/JKCI.2006.18.2.189
  23. Seo, D. W., Han, B. S., and Shin, S. W. (2007) Behaviour of One-way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars. Journal of the Korea Concrete Institute, 19(6), 763-771 https://doi.org/10.4334/JKCI.2007.19.6.763
  24. Timoshenko, S. P. and Goodier, J. N. (1970) Theory of Elasticity, McGraw-Hill, New York.