Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00248

Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites  

Alexander, Bobyl (Division of Solid State Physics, Ioffe Institute)
Sang-Сheol, Nam (Resarch Institute of Industrial Science and Technology RIST, POSCO Global R&D center)
Jung-Hoon, Song (Resarch Institute of Industrial Science and Technology RIST, POSCO Global R&D center)
Alexander, Ivanishchev (Resarch Institute of Industrial Science and Technology RIST, POSCO Global R&D center)
Arseni, Ushakov (Institute of Chemistry, Saratov State University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.4, 2022 , pp. 438-452 More about this Journal
Abstract
For cuboid and ellipsoid crystallites of LiFePO4 powders, by X-ray diffraction (XRD) and microscopic (TEM) studies, it is possible to determine the anisotropic parameters of the crystallite size distribution functions. These parameters were used to describe the cathode rate capability within the model of averaging the diffusion coefficient D over the length of the crystallite columns along the [010] direction. A LiFePO4 powder was chosen for testing the developed model, consisting of big cuboid and small ellipsoid crystallites (close to them). When analyzing the parts of big and small rate capabilities, the fitting values D = 2.1 and 0.3 nm2/s were obtained for cuboids and ellipsoids, respectively. When analyzing the results of cyclic voltammetry using the Randles-Sevcik equation and the total area of projections of electrode crystallites on their (010) plane, slightly different values were obtained, D = 0.9 ± 0.15 and 0.5 ± 0.15 nm2/s, respectively. We believe that these inconsistencies can be considered quite acceptable, since both methods of determining D have obvious sources of error. However, the developed method has a clearly lower systematic error due to the ability to actually take into account the shape and statistics of crystallites, and it is also useful for improving the accuracy of the Randles-Sevcik equation. It has also been demonstrated that the shape engineering of crystallites, among other tasks, can increase the cathode capacity by 15% by increasing their size correlation coefficients.
Keywords
Crystallite Statistic; $LiFePO_4$; Rate Capability; Li Diffusion; Shape Engineering;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, and P. C. Talbot, J. Electrochem. Soc., 2019, 166(16), A4128-A4135.    DOI
2 A. Bobyl and I. Kasatkin, RSC Adv., 2021, 11, 13799-13805.    DOI
3 C. E. Kril and R. Birringer, Philos. Mag. A, 1998, 77(3), 621-640.    DOI
4 R. J. Matyi, L. H. Schwartz, and J. B. Butt, Catal. Rev. Sci. Eng., 1987, 29(1), 41-99.    DOI
5 T. B. Zunic and J. Dohrup, Powder Diffr., 1999, 14(3), 203-207.    DOI
6 T. Lahrs, Quality driven: Phostech's advanced LiFePO4 cathode, International power supply conference and exhibition, French Riviera, 2009, 1-27. 
7 H. Al-Shammari and S. Farhad, Energies, 2022, 15(2), 410. 
8 K. Heo, J. Im, J.-S. Lee, J. Jo, S. Kim, J. Kim, and J. Lim, J. Electrochem. Sci. Technol., 2020, 11(3), 282-290.    DOI
9 L. Wen, X. Wang, X. Liu, J. Sun, L. An, X. Ren, Z. Li, G. Liang, S. Jiang, Ionics, 2019, 25, 5269-5276.    DOI
10 N. C. Popa, J. Appl. Cryst., 1998, 31, 176-180.    DOI
11 N. C. Popa and G. A. Lungu, J. Appl. Cryst., 2013, 46, 391-395.    DOI
12 L. Lutterotti, S. Matthies, and H. R. Wenk, Newslett. CPD, 1999, 21, 14-15. 
13 P. Boullay, L. Lutterotti, D. Chateignera, and L. Sicard, Acta Cryst., 2014, A70, 448-456. 
14 A. Nalbach-Leniewska, Series Statistics, 1979, 10(3), 381-387.    DOI
15 G. Tarmast, Multivariate log - Normal distribution, 53rd ISI World Statistics Congress, Seoul, 2001. https://2001.isiproceedings.org/ 
16 F. Scholz (Ed.), Electroanalytical methods: Guide to experiments and applications, Springer, Berlin, 2010. 
17 M. F. Triola, Elementary statistics technology update, 11th ed., Pearson Education, 2012. 
18 V. F. Lvovich, Distributed impedance models, Impedance spectroscopy: Applications to electrochemical and dielectric phenomena, John Wiley & Sons, 2012. 
19 K. Yang and M. Tang, J. Mater. Chem. A, 2020, 8(6), 3060-3070.    DOI
20 J. Baek, K. Kim, and W. Shin, J. Electrochem. Sci. Technol., 2018, 9(2), 85-92.    DOI
21 H. W. Kim, P. Manikandan, Y. J. Lim, J. H. Kim, S.-C. Nam, and Y. Kim, J. Mater. Chem. A, 2016, 4(43), 17025-17032.    DOI
22 I. N. Beckman, Higher mathematics: The mathematical apparatus of diffusion, Yurayt Publishing House, Moscow, 2017. 
23 A. S. Hammood, Corrosion mechanism of cupronickel alloys, Lambert Academic Publishing, German, 2014. 
24 H. A. Wiltsche and P. Berghofer (Eds.), Phenomenological approaches to physics, Springer, Cham, 2020. 
25 M. Tran, N. Ertugrul, and T. Miller, World Appl. Sci. J., 2017, 35(8), 1561-1567. 
26 M. Farag, M. Fleckenstein, and S. Habibi, J. Power Sources, 2017, 342, 351-362. 
27 R. Malik, D. Burch, M. Bazant, and G. Ceder, Nano Lett., 2010, 10(10), 4123-4127.    DOI
28 D. A. Cogswell and M. Z. Bazant, Electrochem. Commun., 2018, 95, 33-37.    DOI
29 A. V. Churikov, A. V. Ivanishchev, A. V. Ushakov, and V. O. Romanova, J. Solid State Electrochem., 2014, 18, 1425-1441.    DOI
30 T. Kim, W. Choi1, H.-C. Shin, J.-Y. Choi, J.M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.    DOI
31 J. Li, B. L. Armstrong, J. Kiggans, C. Daniel, and D. L. Wood, J. Electrochem. Soc., 2013, 160(2), A201. 
32 S. Ju, H. Peng, G. Li, and K. Chen, Mater. Lett., 2012, 74, 22-25.    DOI
33 M. Chen, Q. Ma, C. Wang, X. Sun, L. Wang, and C. Zhang, J. Power Sources, 2014, 263, 268-275.    DOI
34 F. Wang, Z. Fang, and Y. Zhang, J. Electroanal. Chem., 2016, 775, 110-115.    DOI
35 R. R. Kapaev, S. A. Novikova, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Nanotechnol. Russia, 2016, 11, 757-760. 
36 J. Seher and M. Froba, ACS Omega, 2021, 6, 24062-24069.   DOI
37 D. H. Jeon, J.-H. Song, J.-P. Hong, and S. H. Lee, J. Ind. Eng. Chem., 2019, 76, 524-531.    DOI
38 W. Peukert, Elektrotechnische Zeitschrift, 1897, 20, 20-21. 
39 N. F. Compagnone, J. Power Sources, 1991, 35(2), 97-111.    DOI
40 N. E. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, J. Electrochem. Soc., 2020, 167, 013535. 
41 J. Kim, S. Park, S. Hwang, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2022, 13(1), 19-31.    DOI
42 A. V. Ivanishchev, I. A. Ivanishcheva, S.-C. Nam, and J. Mun, Rus. J. Electrochem., 2021, 57(7), 706-720.    DOI
43 F. Jiang and P. Peng, Sci. Rep., 2016, 6, 32639. 
44 R. Tian, S. Park, P. King, G. Cunningham, J. Coelho, V. Nicolosi, and J. Coleman, Nat. Commun., 2019, 10, 1933. 
45 C. Heubner, M. Schneider, and A. Michaelis, Adv. Energy Mater., 2020, 10(2), 1902523. 
46 J.-S. Lee, K. Heo, H.-S. Kim, M.-Y. Kim, J. Kim, S.-W. Kang, and J. Lim, J. Alloys Compd., 2019, 781, 553-559.    DOI
47 Z. Ahsan, B. Ding, Z. Cai, C. Wen, W. Yang, Y. Ma, S. Zhang, G. Song, and M. Javed, J. Electrochem. En. Conv. Stor., 2021, 18(1), 010801. 
48 J. Choi, N. Voronina, Y. Sun, and S. Myung, Adv. Energy Mater., 2020, 10(42), 2002027. 
49 I.-S. Seo, G.C. Hwang, J.-K. Kim, and Y. Kim, Electrochim. Acta, 2016, 193, 160-165.    DOI
50 X. Huang, Y. Yao, F. Liang, and Y. Dai, J. Alloys Compd., 2018, 743, 763-772.    DOI
51 Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, and T. Liu, ACS Appl. Mater. Interfaces, 2014, 6(12), 9236-9244.    DOI