• Title/Summary/Keyword: Analytical function

Search Result 1,270, Processing Time 0.028 seconds

Analytical and numerical study of temperature stress in the bi-modulus thick cylinder

  • Gao, Jinling;Huang, Peikui;Yao, Wenjuan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.81-92
    • /
    • 2017
  • Many materials in engineering exhibit different modulus in tension and compression, which are known as bi-modulus materials. Based on the bi-modulus elastic theory, a modified semi-analytical model, by introducing a stress function, is established in this paper to study the mechanical response of a bi-modulus cylinder placed in an axisymmetric temperature field. Meanwhile, a numerical procedure to calculate the temperature stresses in bi-modulus structures is developed. It is proved that the bi-modulus solution can be degenerated to the classical same modulus solution, and is in great accordance with the solutions calculated by the semi-analytical model proposed by Kamiya (1977) and the numerical solutions calculated both by the procedure complied in this paper and by the finite element software ABAQUS, which demonstrates that the semi-analytical model and the numerical procedure are accurate and reliable. The result shows that the modified semi-analytical model simplifies the calculation process and improves the speed of computation. And the numerical procedure simplifies the modeling process and can be extended to study the stress field of bi-modulus structures with complex geometry and boundary conditions. Besides, the necessity to introduce the bi-modulus theory is discussed and some suggestions for the qualitative analysis and the quantitative calculation of such structure are proposed.

Evaluation of Analytical Parameters on Forming Limit Diagram based on Initial Geometrical Instability (초기 형상 불안정성 기반 성형한계선도의 이론적 변수에 따른 성형 한계영역 평가)

  • Noh, H.G.;Lee, B.E.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • The current study examines the effect of the analytical parameter values on the theoretical forming limit diagram (FLD) based on the Marciniak-Kuczynski model (M-K model). Tensile tests were performed to obtain stress-strain curves and determine the anisotropic properties in the rolling, transverse and diagonal direction of SPCC sheet materials. The experimental forming limit curve for SPCC sheet material was obtained by limiting dome stretching tests. To predict the theoretical FLD based on the M-K model, the Hosford 79 yield function was employed. The effects of three analytical parameters - the exponent of the yield function, the initial imperfection parameter and the fracture criterion parameter - on the M-K model, were examined and the results of the theoretical FLD were compared to the experimentally measured FLD. It was found that the various analytical parameters should be carefully considered to reasonably predict the theoretical FLD. The comparison of the acceptable forming limit area between the theoretical and experimental FLD is used to compare the two diagrams.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Analytical Solutions of Unsteady Reaction-Diffusion Equation with Time-Dependent Boundary Conditions for Porous Particles

  • Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.652-665
    • /
    • 2019
  • Analytical solutions of the reactant concentration inside porous spherical catalytic particles were obtained from unsteady reaction-diffusion equation by applying eigenfunction expansion method. Various surface concentrations as exponentially decaying or oscillating function were considered as boundary conditions to solve the unsteady partial differential equation as a function of radial distance and time. Dirac delta function was also used for the instantaneous injection of the reactant as the surface boundary condition to calculate average reactant concentration inside the particles as a function of time by Laplace transform. Besides spherical morphology, other geometries of particles, such as cylinder or slab, were considered to obtain the solution of the reaction-diffusion equation, and the results were compared with the solution in spherical coordinate. The concentration inside the particles based on calculation was compared with the bulk concentration of the reactant molecules measured by photocatalytic decomposition as a function of time.

An Analytical Expression for Current Gain of an IGBT

  • Moon, Jin-Woo;Chung, Sang-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.401-404
    • /
    • 2009
  • A simple analytical expression for a current gain of IGBT is derived in terms of the device parameters as well as a gate length dependent parameter, which allows for the determination of the current components of the device as a function of its gate length. The analytical results are compared with those from simulation results. A good agreement is found.

Performance Analysis of Space-Time Codes in Realistic Propagation Environments: A Moment Generating Function-Based Approach

  • Lamahewa Tharaka A.;Simon Marvin K.;Kennedy Rodney A.;Abhayapala Thushara D.
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.450-461
    • /
    • 2005
  • In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fad­ing channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Flow Prediction by Analytical Response Function (해석적 해법에 의한 흐름의 예측)

  • 윤태훈
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.93-99
    • /
    • 1975
  • A linear and optimum linear systems have been reviewed in some detail. The procedure of the solution of the Wiener-Hopf equation analytically in time domain is given and the prediction of downstream outflow for given upstream inflow are made. The predicted results are fairly satisfaotory. The intended physical interpretation of the analytical solution could be descriptable but it was found that the evaluation of the parameters of the response function is rather difficult due to complicacy and a great deal of works.

  • PDF

Noncentral F-Distribution for an M-ary Phase Shift Keying Wedge-Shaped Region

  • Kim, Jung-Su;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.345-347
    • /
    • 2009
  • This letter presents an alternative analytical expression for computing the probability of an M-ary phase shift keying (MPSK) wedge-shaped region in an additive white Gaussian noise channel. The expression is represented by the cumulative distribution function of known noncentral F-distribution. Computer simulation results demonstrate the validity of our analytical expression for the exact computation of the symbol error probability of an MPSK system with phase error.

  • PDF

A Study on the Compensation of Transducer Effects for the Measurement of Vibration with an Impedance Head (임피턴스헤드로 진동계측시 변환기의 부착영향을 보상하는 방법에 관한 연구)

  • 이현엽;박재영
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.117-122
    • /
    • 1995
  • The transfer matrix method is proposed to compensate the attachment effect of a piezo-electric impedance head. To validate the proposed method, an experiment is carried out for axial vibration of a uniform rod for which an analytical solution is known. The impedance head is attached to the test rod by a stud and is connected to the exciter. The frequency response function is mesured by applying random excitation from the electro-magnetic exciter. The frequency response function compensated by the method proposed in this research shows good agreement with the analytical solution.

  • PDF

Calculation of Thermodynamic Properties Through the Use of two New Analytical Expressions for the Partition Function of the Morse Oscillator

  • Glossman, Daniel M.;Castro, Eduardo A.;Fernandez, Francisco M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.4
    • /
    • pp.145-149
    • /
    • 1984
  • The entropy and heat capacity are calculated for the Morse oscillator model in order to test the quality of the partition function recently deduced by two of us. It is found that these analytical expressions are more reliable than the usually accepted one and give better results in the calculation of thermodynamic properties.