Calcutation of Thermodynamic Properties of the Morse Osciflator

copolymers (see Table 3). This fact also justify the random
phase approximation for block copolymers.

Acknowledgements. This work was indebted to the Korea
Science and Engineering Foundation, was also partially
supported by the Center for the Theoretical Physics and
Chemistry. The authors acknowledge helpful discussions with
Dr. C.H. Kim.

References

(1) 2. Grubisic, P. Rempp and H. Benoit, J. Polym. Sci.
Polym. Lett. Ed.. B, 753 (1967).

{2) J.R. Runyon, D.E. Barnes, J.F. Rudd and L. H. Tung,
J. Appl. Polym. Sci.. 13, 2359 (1969).

(3y J. P. Plante. N. Ho-Duc and J. Prud’homme. Eur.
Pofym. J.. 8, 77 (1973).

{4) F. S. C.Chang.J. Chromatogr., 8, 67 (1971).

(5} J. V. Dawkins, Polymer. 19, 705 (1978).

(8) J.V. Dawkins and H. Hemming, Makromoli. Chem.. 178,
1795 (1975).

Bufletin of Korean Chemical Society, Vol, 5. No. 4. 1984 145

(7) H. Utiyama, K. Takenaka, M. Mizumori and M. Fukuda,
Macromolecules, 7, 28 {1974).

{8} L. lonescu, C. Picot, R. Duplessix, M. Duval, H. Benoit.
J.P. Lingelser and Y, Gallot, J. Pofym. Sci., Polym. Phys.
Ed., 19, 1033 (1981).

(9) A.D. LeGrand and D.G. LteGrand, Macromofecules, 12,
450 {(1979).

(10) T.Tanaka, M. Omoto and H. Inagaki, Macromolecules.
12, 146 (1979).

(11} N. Ho-Duc and J. Prud’homme, Macromotecules, 6,
472 (1973).

(12) T. Spychaj and D. Berek, Polymer, 20, 1108 (1979),

{13) A. Campos, V. Soria and J. E. Figueruels, Makromol.
Chem., 180, 1361 (1979).

(14) L. H. Tung, J. 4ppl. Polym. Sci., 2&, 953 (1979).

(15) A. Dondos, P. Remp and H. C. Bencit, Polymer, 13, 87
(1972).

{16) A. Dondos, Makrmol. Chem., 147, 123 (1971).

Calculation of Thermodynamic Properties Through the Use of two New Analytical
Expressions for the Partition Funetion of the Morse Oscillator
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The entropy and heat capacity are calculated for the Morse oscillator model in order to test the quality of the partition
function recently deduced by two of us. It is found that these analytical expressions are more reliable than the usually ac-
cepted one and give better results in the calculation of thermodynamic properties.

1. Introduction

The calculation of thermodynamic propeties in statiscal
mechanics is usually made through known or estimated
structural and spectroscopic parameters, by means of the
analytical expression for the partition function of the system
under consideration, Usually, the rigid rotorharmonic oscilta-
tor model is unsatisfactory, so it is neccesary to use more
realistic models. The Morse potential is generally chosen
as a model of a one-dimensional anharmonic oscillator!.
The partition function corresponding to this model can be
calculated exactly in a numerical way, because there is only
a finite number of energy eigenvalues??,

However, in the study of certain physical-chemistry pro-
perties, it is mandatory to take recourse to amalytical ex-
pressions for the partition function, even though they give
only approximate results, For instance, isotope effects on
the equilibrium constants are of theoretical and experi-
mental interest in connection with isotope separation, It has
been suggested that in the approximation of the harmonic

' oscillator-rigid rotator the isoiopic mass dependence of the

dissociation equilibriom constant of diatomic molecules
changes sign at high temperatures®. It is necessary to calcu-
late molecular partition function which is customarily done
in the framework of the Born-Oppenheimer approximation,
The rotation-vibration energy levels can be calculated by
direct integration of the Schridinger equation s¢ that precise
partition functions are available by numerical sumation of
Boltzmann factors®.
For a qualitative discussion numerical partition functions
are not well suited, so that analytical partition functions are
neccesary for the general discussion of the effect mentioned
above. Unfortunately, analytical expressions can only be
found in certain approximations.

The usual way to obtain those approximate analytical
exppressions consists in taking into account the partition
function of the Morse oscillator:

QN, u) =A(ﬂ)_ZJ:3° exp(~u(n—n(z+1yp) (1)
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and replacing the upper timit of the sum by <025, where

u=ha/kT ¢)]

and

A@) =exp(—u/2+uy/4) 3)

with @ the vibrational frecuency in wave numbers, y=hw/
{4D), and D is the dissociation energy from the potential
minimum, The exponential series that is obtained clearly
diverges because of the term #ny? in the exponential factor.

In order to avoid this difficulty, it is customary to consider
an expansion of (oo, u) in power series of § and to retain
only a finite number of terms.

After performing that expansion, the following expression
is obtained®5:

Q(OO, u, M)=A(ﬂ)é é (S!)"! (gx”(ﬂ+1))se—ﬂs (4)

If only the first term in x is considered, we arrive at the
well-known expression®§:

Q(o0,u, D=Au) 1—a) A +2uxa(1—a)~)  (5)
with
ree*

Although the expression (5} gives good results, the way
that leads to it is mathematically wrong, because Q(co, )
is divergent.

Recently, two new analytical expressions for the partition
function of the Morse oscillator have been given, and they
were obtained via a mathematical procedure that is wholly
correct. By means of it, the previous formal errors were
amendedS, These two new analytical formulations gave
beiter results than those obtained using less elaborate
expressions. With the purpose to verify the validity of applica-
tion of such formulations, in the present work we have
calculated two thermodynamic properties: the entropy S and
the heat-capacity, C over a wide range of temperatures.

2. Analytical expressions for the partition function, the
entropy and heat-capacity.

The expressions that were deduced for the partition
function areS:

Q. w) =A@ 53 53(5) 6D =D wgf 2 @) (6)

and
QN W) =A@ L3 (1) (/1) g™ @) @
where
f@=Q0-a"N/(1-a)
and
g@)=0-r"H/1-n
with
SO @=dif(u)/dw
and

g9 (W) =dig(u) }dy
If we symbolize equation (6), summed up to the M-th power

in y as Q(N, u, M), then we obtain:

Q(N,u, }=A(w) (f(x) 1+ 20uy(l—a) t—
(N+Dux(l—a) I (N+2(1—a) V) (8)
In a similar way, from (7), we obtain;
Z(N,u,)=A@w) (g) U+uyrQ+r Q—p)~2—

(N+Dux(1-n "N+ QA+ A—0"M)  (9)

where
r=exp(—u(l—~y))=ae*y

From expressions (8) and (9) and taking into account
that the statistical expression for the entropy is®:

S=k(InQ— (8/Q)2Q/3p) (10)
and for the heat—capacity:
C=kHQ10%Q/0—Q2(3Q/3p)%) 11

the calculations of both thermodynamic properties are strai-
ghtforward and they were done for a wide range of tempera-
tures, similar to other calculations®.

Taking into account that 8=(kT)™! and z=he/kT, then

u=hwf and since %=%%§- and g—§=hw=ufﬁ, we
arrive at the following formulae for S and C:
Szk(an—-%—(dedu)) (12)
ad -
C=ha(Q1 49— 2 (aq/auy?) 13

Therefore, evaluating analytically the first and second
derivatives of @ with respect to # and replacing them in
expressions (12) and (13), the values of the thermodynamic
properties were determined. Similar calculations have been
done for Z(N, «, ).

3. Results and discussion

In Table 1, the results of the calculation of the entropy
from the expressions (5), (8), and (9) are displayed for differ-
ent values of z and y. The results are compared with the
exact ones®. In Table 2 we give the results of the calculation
of the heat-capacity. Instead of using (%, y), we have employed
(v, v=u/4y) as variables in order to compare our results
with those given by Amorebieta and Colussi®.

The numerical values for the entropy in Tabie 1 lead us to
the following conclusions:

(i) The results obtained for the entropy using@ (N, #, 1)
or Z(N,u,]) are closer to the exact values than those
obtained from Q(oo,u,7).

(ii) The behaviour of Sg(x, 1y and Sz(y 4,1y 8re similar
to the function Squ, ., if it is considered as depending on
v, that is, for a fixed « value. They show a maximum
value when v=3.0. On the other hand, Sg(.,.n has
not this behaviour, and besides it is a monotonously
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TABLE 1: Entropy of a Morse Oscillator (J k™Ymol™1) for Several u and v Values (u=hw/kT, v = u/4)h. Results are Ordered as Follows:
Q6o 1~5Q0, 5, - SzeN, 0. - Sov, 0

y i
0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.80 1.00 2.00 5.00
0.2 4382 4046 38.08 :
11.53 9.15 5.77
11.52 9.14 5.76
11.51 9.12 573
03 4082 3745 3507 3173
14.91 11.54 9.14 577
14.89 11.52 9.12 5.75
14.86 11.49 912 2574
0.4 38.83 3546 3308 2974  27.38
17.30 13.38 11.53 9.17 571
17.28 13.36 11.51 9.13 574
17.23 13.32 11.46 9,08 573
0.5 3738 3402 3164 2829 594 2413
19.14 1619 13.38 9.11 9.20 577
1912 1616 13.35 9.08 9.13 572
19.05 16.08 13.31 9.06 9.04 570
0.6 3628 3292 3053 2719 24.83 2302 2155
20.63 17.26 1487 1150 9.11 572 576
20.61 17.23 14.84 11.46 9.06 5.69 5.70
2052 1715 14.77 11.40 9.00 5.68 5.69
0.7 3542 3204 2966 2631 23.95 214 2067
21.86 18.19 16.11 13.33 11,51 9.10 570 -
21.85 18.16 16.08 13.29 1145 9.4 5.66
21.75 18.08 15.98 13.20 11.34 8.97 5.65
0.8 3470 3133 2895 2560 2324 2142 19.95 17.68
292 19.81 17.16 13.25 1141 9.02 9.07 571
22.90 19.79 17.13 1322 1132 8.98 9.01 5.64
22.80 19.68 17.03 13.15 11.30 8.93 8.91 5.60
09 34.11 3074 2836 2501 2264 2083 19.36 17.08
2382 2045 18.06 14.70 1320 1136 8.98 5.65
23.81 20.44 18.04 14.67 13.17 11.32 8.93 5.65
23.71 20.34 17.95 14.59 13.05 11.23 .87 5.56
1.0 33.61 3024 27.86 2451 2214 2032 1885 1657  14.85
2460 2103 18.84 15.88 13.10 11.27 8.91 8.94 5.62
2459 2101 18.83 15.87 13.08 11.23 8.87 8.91 5.56
2450 2093 18.74 15.78 13.01 11.16 1.17 8.83 5.52
1.5 31.93 3857 2618 2283 2047 18.64 17.17 14.88 13.15
2725 2388 21.50 18.14 16.21 13.94 12.45 10.58 8.36
2726 2390 2152 18.17 16.26 13.98 12.49 10.66 8.40
2734 VYT 2159 18.23 16.36 14.01 12,51 10.67 8.37
20 3098 2761 2523 21.88 19.51 17.69 16.21 1392 12,19 7.27
2858 2527 2282 19.33 17.10 15.27 14.04 11.48 9.73 4.65
2860 2531 22.87 19.39 17.18 15.38 14.19 11.63 9.90 483
2899 2572 2322 1990 17.49 15.67 14.56 11.84 10.08 4.85
3.0 29.93 26,57 248 20.83 18.46 16.64 15.16 12.86 11.13 6.21
29.35 2598 2360 2024 17.88 16.05 14.57 12.41 10.53 5.59
2938 26.03 23.66 2034 18.00 16.20 14.75 12.67 10.82 6.06
3040 2703 2464 21.29 18.91 17.09 15.61 13.67 11.55 6.49
40. 2937 2600  23.61 2026 17.89 16.07 14.59 12.29 10.56 5.65
2924 2587 2349  20.14 17.77 1594  14.45 12.17 10.43 5.52
2927 2591 2354 2022 1787 16.07 1460 1237 10.68 597
3052 2713 2477 2147 1904 1722 15.65 13.43 172 6.74
5.0 29.01 2564  23.26 1990  17.54 15.71 14.23 11.94 10.20 5.31 1.08
2899 2562 2323 19.88 17.51 15.69 1421 1192 10.18 5.28 1.01
29.01 2565 2327 19.94 17.59 15.79 14.33 12.07 10.36 5.63 1.76

30.16 26.81 24.39 21.03 18.70 16.86 15.44 13.18 11.34 6.44 2,22
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60 - 28.77 2540 23.01 15.66 17.29
28,76 2540 23.01 19.66 17.29

28,78 25.42 23.04 18.70 17.35

29.70 26.33 23.93 20.59 18.24

7.0 28,59 25.22 22.84 19.48 17.12
28.59 25,22 22.84 19.48 17.12

28.60 25.24 22.86 19.52 17.16

29.29 2592 23.56 20.19 17.82

10.0 28.26 24.90 22.51 19.10 1679
28.26 24.90 22,51 19.16 16,79

28.27 2491 22.52 19.17 16.81

28.58 25.19 22.80 19.45 17.07

50.0 27.63 24.26 21.87 18.52 16.15
27.63 24.26 21.87 18.52 16.15

27.63 24.26 21.83 18.52 16.15

27.66 24.27 21.88 18.53 16.15

diminishing function.

{ili) For v values less than 2.0, the results for S show the
correct behaviour, that is they decrease as v decreases.
On the contrary, Sge. . grows as v diminishes and
the results ar very far from the exact ones,

Similar conclusions foltow from the analysis of the results
in Table 2 for C, with the difference that there are some
values abnormally large for small # and v values, although
for medium and large » and v values, the correct behaviour
is observed. Another point that deserves special attention is
that the C values have errors with respect to the exact ones,
that are greater than those obtained for S.

4. Conclasions

In this work, two thermodynamical properties have been
evaluated in order to test the validity of application of
expressions (8) and (9). The results of Table 1 and 2 show that

15.47 13.99 - 11.69 9.96 5.07 093
15.46 13.99 11.69 9.95 5.06 090
15.54 14.07 11.80 10.09 5.32 1.39
16.40 14.94 12.64 10.09 6.02 1.67
15.29 13.81 11.52 9.78 4.90 0.85
15.29 13.81 11.52 9.78 4.89 0.85
15.35 13.86 11.60 9.88 5.08 1.25
16.00 14.52 12.26 10.50 5.61 1.80
14.97 13.49 i1.1% 9.45 4.58 0.70
14.97 13.49 11.19 9.45 4.58 0.70
14.99 13.52 11.23 9.50 4.67 0.87
15.26 13.77 11.46 9.75 4.90 1.05
14.33 12.85 10.53 8.82 3.96 0.41
14.33 12.85 10.55 8.82 397 041
14.33 12.85 10.55 3.82 397 0.42
14.34 12.84 10.54 8.83 3.98 0.42

such analytical expressions lead to formulations for the
entropy and heat capacity from which we obtain results that
are close to the exact values. Moreover, they show the
correct behaviour. This is not true when we consider the
results obtained from expression (5), except when the z and
v values lie in the neighborhood of one of the Sgw, 1y—S¢ (. 4, 11
and Cov,0-CQuo.u,1y Crossings, or for v values greater
than those belonging the corssings,

It is singificant that the results allow us to verify the
usefulness of these formulations for small u and v values,
and to date there are no correct values and all calculations
have been done in the range where Q(oo,x,1) gives correct
results2,

Then we conclude that the analytical formulations recently
given®, are more reliable than the usually accepted ones, they
give better results and can be used for a range of temperatures,
that up to now, had not been reported.

TABLE 2: Heat Capacity of a Morse Oscilator (J k~'mo!"!) for Several # and v values (¢ = ho/kT, v = u/4x). Results are Ordered as Follows:

Cotcorm ty=Coene, 1 Czaw, e, nCow,

v

0.10 0.60 0.80 1.00 1.50 2.00 3.00 4.00 3.00 1000
0.20 15.94
12.80
14.44
0.03
0.60 14.15 13.88
1.46 L4
1.42 1.16
0.29 0.17
0.80 13.47 i3.22 13.03
0.50 0.65 0.7
0.82 0.09 0.05
0.53 0.42 0.32
1.00 12.93 12,68 12,50 12.29
L.o2 0.84 0.91 0.60
0.94 0.39 0.05 -0.32
0.84 0.75 0.67 0.50
1.50 1194 11.71 11.53 11.32 10.73
2.56 2.33 247 1.96 1.40
247 1.84 1.76 1.19 0.32
191 172 1.67 1.46 1.02
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2.00 11.30 11.06 10.89 10.68 10.08 9.44
4,64 4.75 4.21 3.98 4.20 2.62
4,56 4.29 3.63 1.71 3,07 1.37
3.34 3.26 2,97 2,76 2.48 1.63
3.00 10.54 10.28 10.10 9.88 9.24 8.53 7.26
7.89 7.65 7.90 7.24 6.55 3.80 4.37
7.86 7.46 7.68 6.92 6.07 5.12 3.23
6.55 6.32 6.44 5.86 5.16 4.35 279
4.00 10.05 92.82 9.64 9.42 8.75 8.00 6.47 5.32
9.25 3.92 8.83 8.61 7.67 7.16 6.07 4.37
9.25 8.91 8.84 8.62 7.60 7.13 6.17 4,05
9.16 8.74 8.70 8.45 7.28 6.82 5.78 349
5.00 9.75 9.51 9.33 9.11 843 7.66 6.13 4.79 3.60
9.54 9.33 917 8.90 8.28 7.44 5.7 4.73 3.34
9.55 9.41 9.28 9.03 8.49 7.66 5.82 5.43 3.91 ‘
10.57 1046 10.38 9.87 9.46 8.2¢8 5.87 6.12 3.64
6.00 9.54 9.30 9.12 8.90 8.2t 7.41 5.82 444 3.25
9.49 9.25 9.07 8.85 8.16 7.36 5.77 4.38 3.02
9.50 9.33 9.17 8.98 8.35 7.61 6.12 4.89 349
10.98 10.75 10.54 10.33 9.61 8.74 7.04 5.55 3.43
7.00 9.38 9.14 8.96 274 8.04 723 5.60 4.17 299
9.37 9.13 8.95 8.73 3.03 7.22 5.59 4,17 299
9.38 2.19 2.04 8.83 8.19 7.43 5.91 4.65 3.69
10.84 10.59 10 50 102t 9.38 6.68 7.24 6.08 4.69
10.00 9.08 8.84 8.66 3.44 7.73 6.8% 5.18 3.70 2.53 0.19
9.0 8.84 8.66 R4 7.73 6.89 5.18 370 2.53 0.19
9.09 8.88 8.7 8.49 7.81 7.00 5.34 393 2.87 0.73
9.83 9.62 9.41 9.20 8.49 7.66 6.00 4.53 347 1.38
50.00 847 8.23 8.05 7.82 7.09 6.20 4.34 277 164 0.07
8.47 8.23 8.05 7.82 7.09 6.20 4.34 2.77 164 0.07
8.47 8.23 8.05 7.82 7.09 6.21 4.35 278 1.66 0.08
8.49 8.24 8.08 7.82 7.10 6.23 4,36 2,79 1.67 0.08
(1981).
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(2) J. Bohmann and W. Witschel, J. Chem. Soc., Farad, Wiley & Sons, New York, 1966)
Trans. 11, 74, 2235 (1978). (6) F.M. Ferndndez and E. A. Castro, Chem. Phys. Lett., 94,
(3) V.T. Amorebieta and J. Colussi, Chem. Phys. Lett., 82, 530, 388 (1983).

Reactions of Oxomolybdenum (V) with the 17-tungsto-2-phosphate Anion
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Reactions of MoOCIg?™ with e2-[PaW1;061119- have been studied spectrophotometrically and several complexes have been
identified. The transient species initially formed is probably [Mo,Ou(Py;W;06;)218~, At pH < 3 the visible spectrum
changes gradually, indicating formation of a transient isomer of [P,Mo¥W,704:17-, which again transforms into the stable
isomer, The transient isomer absorbs light much more strongly than the stable isomer in the visible range. At pH > 3
[P2WY W1s0g 111~ is formed probably via the transient isomer of [P2Mo¥Wy;0a]%.

(PWOg]*" and {SiW;0441° spectrophotometrically and
found several transient complexes.! Now we have extended

Recenily we have investigated reactions of MoO?* with this work to the reaction of MoO®" with [P,W;04,]10",



