DOI QR코드

DOI QR Code

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • 투고 : 2022.10.06
  • 심사 : 2023.06.15
  • 발행 : 2023.07.25

초록

For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

키워드

참고문헌

  1. ABAQUS CAE (2021), Standard User's Manual, Version 2021.
  2. Abate, G. and Massimino, M.R. (2017), "Parametric analysis of the seismic response of coupled tunnel-soil-aboveground building systems by numerical modelling", Bull. Earthq. Eng., 1-5(1), 443-467. https://doi.org/10.1007/s10518-016-9975-7. 
  3. Abdel Raheem, S.E., Ahmed, M.M. and Alazrak, T.M. (2015), "Evaluation of soil-foundation-structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations", Int. J. Adv. Struct. Eng. (IJASE), 7, 11-30. https://doi.org/10.1007/s40091-014-0078-x. 
  4. Bahuguna, A. and Firoj, M. (2021), "Nonlinear seismic performance of nuclear structure with soil-structure interaction", Iran. J. Sci. Technol.-Trans. Civil Eng., 46(4), 2975-2988. https://doi.org/10.1007/s40996-021-00728-2. 
  5. Belkhir, H., Sbartai, B., Filali, K. and Messioud, S. (2022), "Linear equivalent seismic response of a surface foundation excited by an SH Harmonic wave", Eur. J. Environ. Civil Eng., 1-18. https://doi.org/10.1080/19648189.2022.2162978. 
  6. Bolisetti, C. (2015), "Site response, soil-structure interaction and structure-soil-structure interaction for performance assessment of buildings and nuclear structures", State University of New York at Buffalo. 
  7. Celebi, E., Firat, S. and Cankaya, I. (2006), "The evaluation of impedance functions in the analysis of foundations vibrations using boundary element method", Appl. Math. Comput., 173(1), 636-667. https://doi.org/10.1016/j.amc.2005.04.006. 
  8. Celebi, E., Goktepe, F. and Karahan, N. (2012), "Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction", Nat. Hazard. Earth Syst. Sci., 12(11), 3495-3505. https://doi.org/10.5194/nhess-12-3495-2012. 
  9. EC8-2004 (2004), Eurocode 8: Design of Structures for Earthquake Resistance, Part 5: Foundation, Retaining Structures and Geotechnical Aspects. 
  10. Farghaly, A.A. and Ahmed, H.H. (2013), "Contribution of soil-structure interaction to seismic response of buildings", KSCE J. Civil Eng., 17(5), 959-971. https://doi.org/10.1007/s12205-013-0261-9. 
  11. Filali, K. and Sbartai, B. (2017), "A comparative study between simplified and nonlinear dynamic methods for estimating liquefaction potential", J. Rock Mech. Geotech. Eng., 9, 955-966. https://doi.org/10.1016/j.jrmge.2017.05.008. 
  12. Forcellini, D. (2021), "Analytical fragility curves of shallow-founded structures subjected to Soil-Structure Interaction (SSI) effects", Soil Dyn. Earthq. Eng., 141, 106487. https://doi.org/10.1016/j.soildyn.2020.106487. 
  13. Pecker, A. and Chatzigogos, C.T. (2010), "Non linear soil structure interaction: Impact on the seismic response of structures", Eds. Garevski, M., Ansal, A., Earthquake Engineering in Europe, Geotechnical, Geological, and Earthquake Engineering, Vol 17. Dordrecht. https://doi.org/10.1007/978-90-481-9544-2_4. 
  14. Guellil, M.E., Harichane, Z. and Celebi, A. (2019), "Comparison between non-linear and stochastic methods for dynamic SSI problems", On Significant Applications of Geophysical Methods: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia. https://doi.org/10.1007/978-3-030-01656-2_43. 
  15. Guellil, M.E., Harichane, Z. and Celebi, E. (2020), "Seismic codes based equivalent nonlinear and stochastic soil structure interaction analysis", Studia Geotechnica et Mechanica, 43(1), 1-14. https://doi.org/10.2478/sgem-2020-0007. 
  16. Guellil, M.E., Harichane, Z., Berkane, H.D. and Sadouki, A. (2017), "Soil and structure uncertainty effects on the soil foundation structure dynamic response", Earthq. Struct., 12(2), 153-163. https://doi.org/10.12989/eas.2017.12.2.153. 
  17. Hardin, B. and Drnevich, V. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div., ASCE, 98(7), 667e92. https://doi.org/10.1061/JSFEAQ.0001760. 
  18. Harichane, Z., Guellil, M.E. and Gadouri, H. (2018), "Benefits of probabilistic soil-Foundation-Structure interaction analysis", Int. J. Geotech. Earthq. Eng., 9(1), 42-64. https://doi.org/10.4018/IJGEE.2018010103. 
  19. Karabork, T., Deneme, I.O. and Bilgehan, R.P. (2014), "A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil", Geomech. Eng., 7(1), 87-103. https://doi.org/10.12989/gae.2014.7.1.087. 
  20. Lesgidis, N., Sextos, A. and Kwon, O.S. (2017), "Influence of frequency-dependent soil-structure interaction on the fragility of R/C bridges", Earthq. Eng. Struct. Dyn., 46(1), 139-158. https://doi.org/10.1002/eqe.2778. 
  21. Martakis, P., Aguzzi, G., Dertimanis, V.K., Chatzi, E.N. and Colombi, A. (2021), "Nonlinear periodic foundations for seismic protection: Practical design, realistic evaluation and stability considerations", Soil Dyn. Earthq. Eng., 150, 106934. https://doi.org/10.1016/j.soildyn.2021.106934. 
  22. Massing G. (1926), "Eigenspannungen und verfestigungbeim messing", Proceedings of the 2nd International Congress of Applied Mechanics, 332-335. 
  23. Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: Beneficial or detrimental", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372. 
  24. Mylonakis, G., Nikolaou, S. and Gazetas, G. (2006), "Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations", Soil Dyn. Earthq. Eng., 26(9), 824-853. https://doi.org/10.1016/j.soildyn.2005.12.005. 
  25. NTC (2008), D.M. 14/01/08, New Technical Standards for Buildings, Official Journal of the Italian Republic, January. (in Italian) 
  26. Pais, A., Kausel, E. and Eirgirreerirlg, C. (1988), "Approximate formulas for dynamic stiffnesses of rigid foundations", Soil Dyn. Earthq. Eng., 7, 213-227. https://doi.org/10.1016/S0267-7261(88)80005-8. 
  27. Park, J.H., Choo, J.F. and Cho, J.R. (2013), "Dynamic soil-structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modeling approach", KSCE J. Civil Eng., 17(4), 753-762. https://doi.org/10.1007/s12205-013-0135-1. 
  28. Petridis, C. and Pitilakis, D. (2020), "Fragility curve modifiers for reinforced concrete dual buildings including nonlinear site effects and soil-structure interaction", Earthq. Spectra, 36(4), 1930-1951. https://doi.org/10.1177/8755293020919430. 
  29. Petridis, C. and Pitilakis, D. (2021), "Large-scale seismic risk assessment integrating nonlinear soil behavior and soil-structure interaction effects", Bull. Earthq. Eng., 19(15), 6423-6441. https://doi.org/10.1007/s10518-021-01237-3. 
  30. Pitilakis, D., Moderessi-Farahmand-Razavi, A. and Clouteau, D. (2013), "Equivalent-linear dynamic impedance functions of surface foundations", J. Geotech. Geoenviron. Eng., 139(7), 1130-1139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000829. 
  31. Rambert, W. and Osgood, W.R. (1943), "Description of stress-strain curves by three parameters", Technical Note, National Advisory Committee for Aeronautics, Washington DC. 
  32. Raychowdhury, P. (2011), "Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil-structure interaction (SSI)", Eng. Struct., 33(3), 958-967. https://doi.org/10.1016/j.engstruct.2010.12.017. 
  33. Renz, D., Moderessi-Farahmand-Razavi, A. and Clouteau, D. (2013), "Equivalent-linear dynamic impedance functions of surface foundations", J. Geotech. Geoenviron. Eng., 139(7), 1130-1139. https://doi.org/10.1061/(asce)gt.1943-5606.0000829. 
  34. Robert, D.J., Soga, K. and Britto, A.M. (2015), "Soil constitutive models to simulate pipeline-soil interaction behaviour", International Conference on Geotechnical Engineering ICGE Colombo, August. 
  35. Sbartai, B. (2016), "Dynamic interaction of two adjacent foundations embedded in a viscoelastic soil", Int. J. Struct. Stab. Dyn., 16(03), 1450110. https://doi.org/10.1142/S0219455414501107. 
  36. Sbartai, B. (2018), "Dynamic impedance functions of a square foundation estimated with an equivalent linear approach", Sustain. Civil Infrastr., 2, 460-470. https://doi.org/10.1007/978-3-319-61914-9_35. 
  37. Sbartai, B. (2020), "A polynomial mathematical tool for foundation-soil-foundation interaction", Geomech. Eng., 23(6), 547-560. https://doi.org/10.12989/gae.2020.23.6.547. 
  38. Sbartai, B. and Boumekik, A. (2008), "Ground vibration from rigid foundation by BEM-TLM", ISET J. Earthq. Technol., 45(3-4), 65-78. 
  39. Sbartai, B. and Filali, K. (2012), "CALDYNASOIL: Software of seismic response and liquefaction potential of a soil deposit", 15th World Conference on Earthquake Engineering, Vol. 24, Lisbon, Portugal, September. 
  40. Sekhri, K. (2021), "Analyse dynamique non lineaire d'un pieu isole et groupe de pieux sollicites par des charges sismiques", Universite Batna, Mostefa Ben Boulaid Faculte de Technologie.
  41. Sobhi, P. and Far, H. (2021), "Impact of structural pounding on structural behaviour of adjacent buildings considering dynamic soil-structure interaction", Bull. Earthq. Eng., 20(7), 3515-3547. https://doi.org/10.1007/s10518-021-01195-w. 
  42. Truty, A. (2018), "On consistent nonlinear analysis of soil - structure interaction problems", Studia Geotechnica et Mechanica, 40(2), 86-95. https://doi.org/10.2478/sgem-2018-0019. 
  43. Wolf, J.P. (1985), Dynamic Soil-Structure Interaction (Prentice-Hall International Series in Civil Engineering and Engineering Mechanics), Prentice Hall, Switzerland. 
  44. Wolf, J.P. and Preisig, M. (2003), "Dynamic stiffness of foundation embedded in layered halfspace based on wave propagation in cones", Earthq. Eng. Eng. Vib., 32(7), 1075-1098. https://doi.org/10.1002/eqe.263 
  45. Zhidong, G., Xu, Z., Mi, Z., Xiuli, D., Junjie, W. and Pengcheng, L. (2021), "Efficient seismic analysis for nonlinear soil-structure interaction with a thick soil layer", Earthq. Eng. Eng. Vib., 20(3), 553-565. https://doi.org/10.1007/s11803-021-2038-3.