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Performance Analysis of Space-Time Codes in Realistic
Propagation Environments: A Moment Generating
Function-Based Approach

Tharaka A. Lamahewa, Marvin K. Simon, Rodney A. Kennedy, and Thushara D. Abhayapala

Abstract: In this paper, we derive analytical expressions for the ex-
act pairwise error probability (PEP) of a space-time coded system
operating over spatially correlated fast (constant over the duration
of a symbol) and slow (constant over the length of a code word) fad-
ing channels using a moment-generating function-based approach.
We discuss two analytical techniques that can be used to evaluate
the exact-PEPs (and therefore, approximate the average bit error
probability (BEP)) in closed form. These analytical expressions are
more realistic than previously published PEP expressions as they
fully account for antenna spacing, antenna geometries (uniform
linear array, uniform grid array, uniform circular array, etc.) and
scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.).
Inclusion of spatial information in these expressions provides valu-
able insights into the physical factors determining the performance
of a space-time code. Using these new PEP expressions, we investi-
gate the effect of antenna spacing, antenna geometries and azimuth
power distribution parameters (angle of arrival/departure and an-
gular spread) on the performance of a four-state QPSK space-time
trellis code proposed by Tarokh er al. for two transmit antennas.

Index Terms: Gaussian Q-function, multi-input multi-output
(MIMO) system, modal correlation, moment-generating function,
non-isotropic scattering, space-time coding.

I. INTRODUCTION

Space-time coding combines channel coding with multiple
transmit and multiple receive antennas to achieve bandwidth and
power efficient high data rate transmission over fading channels.
The performance criteria for space-time codes have been derived
in [1] based on the Chernoff bound applied to the pairwise error
probability (PEP). In [2] and [3], the average bit error proba-
bility (BEP) of space-time trellis codes was evaluated using the
traditional Chemoff bounding technique on the PEP. In general,
the Chernoff bound is quite loose for low signal-to-noise ratios.
In [4], the exact-PEP of space-time codes operating over inde-
pendent and identically distributed (i.i.d.) fast fading channels
was derived using the method of residues. A simple method for
exactly evaluating the PEP (and approximate BEP) based on the
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moment generating function associated with a quadratic form of
a complex Gaussian random variable [5] is given in [6] for both
i.i.d. slow and fast fading channels.

When designing space-time codes, the main assumption be-
ing made is that the channel gains between the transmitter and
the receiver antennas undergo independent fading. However,
independent fading models an unrealistic propagation environ-
ment. The spatial fading correlation effects on the exact-PEP of
space-time codes were investigated in [7]. There, the exact-PEP
results derived in [4] were further extended to spatially corre-
lated slow fading channels with the use of residue methods. In
[7], the correlation is calculated in terms of the correlation be-
tween channel gains, but there is no direct realizable physical
interpretation to the spatial correlation. Therefore, existing PEP
expressions derived in the literature do not provide insights into
the physical factors determining the performance of a space-
time code over correlated fading channels. In particular, the
effect of antenna spacing, spatial geometry of the antenna ar-
rays and the non-isotropic scattering environments on the per-
formance of space-time codes are of interest.

In this paper, using the MGF-based approach presented in [6],
we derive analytical expressions for the exact-PEP (and approx-
imate BEP) of a space-time coded system over spatially cor-
related fast and slow fading channels. These expressions are
more realistic than previously published [4], [6], [7] exact-PEP
expressions, as they fully account for antenna placement along
with non-isotropic scattering environments. Using these analyt-
ical expressions one can evaluate the performance of a space-
time code applied to a MIMO system in any general spatial sce-
nario (antenna geometries: Uniform linear array (ULA), uni-
form grid array (UGA), uniform circular array (UCA), etc. scat-
tering models: Uniform, Gaussian, Laplacian, Von-mises, etc.)
without the need for extensive simulations. We discuss two an-
alytical techniques that can be used to evaluate the exact-PEPs
(and therefore, approximate the average BEP) in closed form,
namely, (a) direct partial fraction expansion (b) partial fraction
expansion via eigenvalue decomposition. We demonstrate the
strength of these new analytical PEP expressions by evaluating
the performance of a four-state QPSK space-time trellis code
with two transmit antennas proposed by Tarokh ef al. [1] for
different spatial scenarios.

II. SYSTEM MODEL

Notations: Throughout the paper, the following notations
will be used: [, []*, and [ denote the transpose, complex
conjugate and conjugate transpose operations, respectively. The
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symbols () and ® denote the Dirac delta function and Matrix
Kronecker product, respectively. The notation || - || denotes
the squared norm of a matrix: || X p,g||*> = Zil Z?:l lai;]?,
E {-} denotes the mathematical expectation, vec(A) denotes the
vectorization operator which stacks the columns of A, and [.]
denotes the ceiling operator. The matrix I, is the n x n identity
matrix.

Consider a MIMO system consisting of n transmit anten-
nas and np receive antennas. Let @, = 2\ 20" ... {7
denote the space-time coded signal vector transmitted from
nr transmit antennas in the r-th symbol interval. Let X =
[®1, %2, - -, 2] denote the space-time code representing the en-
tire transmitted signal, where L is the code length. The received
signal at the ¢-th receive antenna in the n-th symbol interval is
given by

nTm

A = VB Y Hlaf iy
p=1

q:1,27...’nR’n:172,...,L (1)

where E is the transmitted power per symbol at each transmit
antenna and nén) is the additive noise on the g-th receive antenna
at symbol interval n. The additive noise is assumed to be white

and complex Gaussian distributed with mean zero and variance

No/2 per dimension. Here the coefficient hfffg represents the
random complex channel gain between the p-th transmit antenna

and the ¢-th receive antenna. Let H,, = [hfﬁ,}] denote the np x
nr channel gain matrix associated with the n-th symbol interval.

By taking into account the physical aspects of scattering, the
channel matrix H,, can be decomposed into deterministic and

random parts as [8]~[10]
H, =JrS,J}, 2

where the matrices J g and J are deterministic and S, is ran-
dom. According to the channel model proposed in [8], S,, is
the ii.d. channel matrix associated with the n-th symbol inter-
val, which has zero-mean and unit variance complex Gaussian
entries, while J g and J 7 are the receive and transmit antenna
correlation matrices, respectively. For the channel models pro-
posed in [9] and [10], S,, represents the random scaitering en-
vironment associated with the n-th symbol interval and J i and
J 7 represent the antenna configurations at the receive and trans-
mit antenna arrays, respectively.

In this work, we are mainly interested in investigating the
impact of antenna separation, antenna geometry and the gen-
eral scattering environment on the performance of a space-time
coded system. The channel model given in [8] is restricted to
a uniform linear array antenna configuration and a countable
number of scatterers around the transmit and receive antenna
arrays. However, the channel models given in [9] and [10], are
capable of capturing different antenna geometries as well as var-
ious non-isotropic power distributions around the transmit and
receive antenna arrays. Here, we only consider planar antenna
arrays and a 2-dimensional scattering environment. Therefore,
we use the 2-dimensional spatial channel model' proposed in
[9] for our PEP investigations.

1 The 2-dimensional case is a special case of the 3-dimensional case where

A. Spatial Channel Model

Using a recently developed spatial channel model [9], we are
able to incorporate the antenna spacing, antenna geometries and
scattering distribution parameters such as the mean angle-of-
arrival (AOA), mean angle-of-departure (AOD) and the angular
spread into the exact-PEP calculations of space-time coded sys-
tems. In this model, the MIMO channel is separated into three
physical regions of interest: The scatterer-free region around the
transmit antenna array, the scatterer-free region around the re-
ceive antenna array and the complex random scattering media
which is the complement of the union of two antenna array re-
gions. This separation of regions leads to the decomposition in
(2) which will play a key role in this paper.

Here Jr is the nyx(2my + 1) transmit antenna array con-
figuration matrix and J g is the ng X (2mp, + 1) receive antenna
array configuration matrix, where (2my+1) and (2mpg+1) are
the number of effective communication modes available in the
transmit and receive regions, respectively. Note that, m7 and
mp are determined by the size of the antenna aperture [11], but
not from the number of antennas encompassed in an antenna
array. The precise definitions of J g and Jp are given in Ap-
pendix L.

S, isthe (2mp + 1) X (2mr + 1) random scattering matrix
with (£, m)-th element given by

{Sn}e,m:// gn (@, @)~ =l gilm=mr=1)¢ 4,4
0J0

£=1,---2mg+1, m=1,--,2mp+1. 3)
Note that {S, }, ,,, represents the complex gain of the scattering
channel between the m-th mode? of the transmit region and the
£-th mode of the receive region, where g, (9, ¢) is the scattering
gain function, which is the effective random complex gain for
signals leaving the transmit aperture with angle of departure ¢
and arriving at the receive aperture with angle of arrival ¢ over
the n-th symbol interval.

II. EXACT PEP ON CORRELATED MIMO
CHANNELS

Assume that perfect channel state information (CSI) is avail-
able at the receiver and a maximum likelihood (ML) decoder
is employed at the receiver. Assume that the codeword X was
transmitted, but the ML-decoder chooses another codeword X .
Then, the PEP, conditioned on the channel, is given by [1]

. .
PX—-XH,)=0Q < 2*]\}0(?) “)
where Q(y) = ﬁ fyao e~*"/2dz, is the Gaussian Q-function

and d is the Euclidian distance.

all the signals arrive from on a horizontal plane only. Similar results can be
obtained using the 3-dimensional channel model proposed in [10].

2The set of modes form a basis of functions for representing a multipath wave
field.
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In the case of a time-varying fading channel,

L
= Z [ H (20 — &)
n=1
L
Z allng ® zX]AL Q)

where £} = (2, — &) (xn — :i:n)T and h,, = (vec (H,{))T is
arow vector. For a slow fading channel (quasi-static fading), we
would have H,, = H forn = 1,2,--- , L, then d? simplifies to

@ = |H(X - X)|?
=h[I,, ® XAlh! (6)
where X A = (X - X)}(X — X)T and h = (vec (HT))T isa
row vector. Note also that X 5 = 22:1 xi.
To compute the average PEP, we average (4) over the joint

probability distribution of the channel gains. By using Craig’s
formula for the Gaussian Q)-function [12]

1 [™/? z2
== ———— ] do
Q) T /0 P ( 2sin? 0)

and the MGF-based technique presented in [6], we can write the
average PEP as

/2
P(X — X) / / ( 20) ~(T')drdd
== / M ( L )do (7
T 0 r 2sin® 0
where Mr(¢) £ [ efVpp(T)dI is the MGF of
_ Es o
B 2N0d ®

and pr(I') is the probability density function (pdf) of I'.

A. Fast Fading Channel Model

In this section, we derive the exact-PEP of a space-time coded
system applied to a spatially correlated fast fading MIMO chan-
nel.

Substituting (2) for H,, in h,, = (vec (H S))T and using the
Kronecker product identity [13, p. 180] vec(AX B) = (B* ®
A) vec (X)), we re-write (5) as

L
= s (JL® TN T, ®2R)(T5 ® I1)sl, (%)
n=1
L
=Y s [UhIn) © (ThaRdr)] (9b)
n=1
L
= Z 8,G sl (9¢)
n=1

T.
where s,, = (vec(S%))" is a row vector and

T
Gn=(JRJr) ®(JLaRJr). (10)
Note that, (9b) follows from (9a) via the identity (13, p. 180]
(A® C)(B® D) = AB ® CD, provided that the matrix
products AB and C'D exist. Substituting (9¢) in (8), we get

E, &
_ s i
I'= 5N ngzl s, Gr8).

Since s,, is a random row vector and G, is fixed as Jr, and J
and x} are deterministic matrices, then I' is a random variable
too. In fact, 8,,G,, sIl is a quadratic form of a random variable.
Now we illustrate how one would find the MGF of I" in (11) for
a fast fading channel.

Using the standard definition of the MGF, we can write

PP
Mrp(é) =E {exp ({2—2\;6 Z snGnsL) }
n=1

L E
=E — 5,G, ;) . 12
{L{lexp(fmos s } (12)

Assume that s, is a proper-complex Gaussian random row-
vector (properties associated with proper-complex Gaussian
vectors are given in [14]) with mean zero and covariance R,
defined as F {s:flsn}. Let p(s1, 82, -, 81) denote the joint
pdf of s = (81,82, -+, 81). Then, we get

an

Mr(§) / Hexp <§~—snG s> p(s1,82,--- ,81)dV
(13)

where we have introduced the following two shorthand notations

/dvé/ / dV1dV,---dVy,
V V1 V2 VL
K
ZHdsfgdSi’Z
=1

where sZ, and s., are the real and imaginary parts of the (-
th element of the vector s,,, respectively and K = (2mpg +
1)(2mr + 1) is the length of s,,.

In this work, we are mainly interested in investigating the spa-
tial correlation effects of the scattering environment on the per-
formance of space-time codes. Therefore, we can assume that
the temporal correlation of the scattering environment is zero,
ie.,

n=1m,

R’I’L7
E{SILSm}:{ 0’ n#m
forn,m=1,2,---,L. (14)

Assuming now that the scattering environment is temporally un-
correlated, and as aresult p(s1, 82, -+ ,81) = HTLZ:1 p(8p), we
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can write the MGF of " as

k E
g/ve p(§2Nos ° )p(s )
L
= H Mr, (§)
n=1

s)

where

E;

r,=
2Ny

—>8,G,s!
Here the 2L K-th order integral in (13) reduces to a product of
2LK-th order integrals, each corresponding to the MGF of one
of the I[';,, where I',, is a quadratic form of a random variable.
The MGF associated with a quadratic random variable is readily
found in the literature [5]. Here we present the basic result given
in Turin {5] on MGF of a quadratic random variable as follows.
Let @ be a Hermitian matrix and v be a proper complex
normal zero-mean Gaussian row vector with covariance matrix
L = E{v'v}. Then, the MGF of the (real) quadratic form
f =vQu’ is given by

M(€) = [det (I - ¢LQ)

In our case, G, is a Hermitian matrix (the proof is given in
Appendix II. Therefore, using (16) we write the MGF of T, as

Mr, (§) = {det (I 57R G )}Al

Es

(16)

a7

where ¥ = is the average symbol energy-to-noise ratio
(SNR), R, is the covariance matrix of s,, as defined in (14)
and G, is given in (10). Substituting (17) in (15) and then the
result in (7) yields the exact-PEP

1 7\'/2L -1
= — det | T R,G do.
w/o H[e< * T ﬂ

n=1
(18)

P(X — X)

Remark 1: (18) is the exact-PEP? of a space-time coded sys-
tem applied to a spatially-correlated fast fading channel follow-
ing the channel decomposition in (2).

Remark 2: When R,, = I (i.e., correlation between differ-
ent communication modes is zero), (18) above captures the ef-
fects due to antenna spacing and antenna geometry on the per-
formance of a space-time code over a fast fading channel.

Remark 3: When the fading channels are independent (i.c.,
R,=Tand G, =1,, ®x}), (18) simplifies to,

1 w/2 L ~ —ng
= det (I, + —L o do,
77/0 H [ < 4sin29wA)}

n=1
which is the same as [6, (9)].
In the next section, we derive the exact-PEP of a space-time
coded system for a slow quasi-static fading channel. Note that,

P(X — X)=

3(18) can be evaluated in closed form using one of the analytical techniques
discussed in Section IV.
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we atre not able to use the fast fading result (18) to obtain the
exact-PEP for a slow fading channel. This is because we de-
rived (18) under the assumption of a temporally uncorrelated
scattering environment. In contrast, for a slow fading channel,
the scattering environment is fully temporally correlated.

B. Slow Fading Channel Model

For a siow fading channel, H,,
which case (8) becomes

= H independent of n in

E,

r=
2N,

19)

T .

where s = (vec(S7))" is a row vector with proper complex
normal Gaussian distributed entries, S is the random scattering
channel matrix with §,, = Sforn=1,--- ,Lin (2) and

= (JhJR) ® (JhXadr). 20)

As before, I' is a random variable that has a quadratic form.
Since G in (20) is Hermitian (as shown in Appendix II, using
(16), we can write the MGF of I as

Mr(€) = {det (I - %RG)] -

where R is the covariance matrix of the scattering environment
which is defined as R = E {s's}. Substitution of (21) into (7)

yields
/2 — -1
] / {det I+—1 RG)} do.
T Jo 4sin” 0
(22)

Remark 4: (22) is the exact-PEP of a space-time coded sys-
tem applied to a spatially correlated slow fading MIMO channel
following the channel decomposition in (2).

Remark 5: When the fading channels are independent (i.e.,
R=Tand G =1,, ® Xa), (22) simplifies to,

1 7\'/2 Y —NrR da
- det (I, + —'_x ,
’/T/O { ¢ < T 4sin?0 A)}

which is the same as [6, (13)].

@

P(X—)X):

P(X - X)=

C. Kronecker Product Model as a Special Case

In some circumstances, the covariance matrix R,, of the scat-
tering channel can be expressed as a Kronecker product between
correlation matrices observed at the receiver and the transmitter
antenna arrays [15], [16], i.e.,

R,=E{sls,) =FEo FT (23)

where F* and F'. are the transmit and receive correlation ma-
trices associated with the n-th symbol interval. Substituting (23)
in (18) and recalling the definition of G,, in (10), we can sim-
plify the exact-PEP for the fast fading channel to

7r/2 L -1
L fo (1 )]
4gin® 9

(24)

P(X - X)=
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where Z,, = (FEJLJ%) ® (FLJLak J1). Similarly, for the
slow fading channel, we can factor R as

R=FE{s's} =FEfg FT (25)

and then the exact-PEP can be expressed as

1 /2 5
T /0 [det (I + 4sin% 0
where Z = (FRJLJI%) @ (FTILX AJd 7).
In Section VII, we provide the necessary condition which a
scattering channel must satisfy in order for the factorizations
(23) and (25) above to hold. There we also define the trans-
mit and receive correlation matrices associated with the channel
model [9]. The pairwise error probability expressions (24) and
(26) will be used later in our simulations to investigate the ef-
fects of correlation on the performance of space-time codes.

—1
P(X - X)= z)} do (26)

IV. REALISTIC EXACT-PEP

The exact-PEP expressions we derived in Sections III-A and
II-B for the fast fading and slow fading MIMO channels, re-
spectively capture the antenna configurations (linear array, cir-
cular array, grid, etc.) both at the transmitter and the receiver
arrays via Jr and J g, respectively. These expressions also in-
corporate the non-isotropic scattermg effects at the transmitter
and the receiver regions via F F for the fast fading case
and via F¥ and F* for the slow fadmg case. Therefore, PEP
expressions (24) and (26) are the realistic exact-PEPs of space-
time coded systems for the fast fading and slow fading MIMO
channels, respectively.

To calculate the exact-PEP, one needs to evaluate the inte-
grals (24) and (26), either using numerical methods or analyti-
cal methods. In the following sections, we present two analyti-
cal techniques which can be employed to evaluate the integrals
(24) and (26) in closed form, namely (a) direct partial fraction
expansion (b) partial fraction expansion via eigenvalue decom-
position. The technique-(b) was previously reported in [17]. We
shall use (26), which is the integral involved with the slow fad-
ing channel model, to introduce these two techniques. Note that
both methods can be directly applied to evaluate the integral in-
volved with the fast fading channel; therefore, we omit the de-
tails here for the sake of brevity.

A. Direct Partial Fraction Expansion

Matrix Z in (26) has size MpMrx MrpMy, where Mp =
2mp + 1 and My = 2my + 1. Therefore, the integrand in (26)
will take the form

— -1 2 N
ol (sin” 9)
det [ I VA =" 27
{e ( T TsnZe )] N @n
Zag(SiHQH)Z
£=0
where N = MpMyp and ay,for £ = 1,2,---, N, are con-

stants.* Note that the denominator of (27) is an N-th order

4One would need to evaluate the determinant of { I + 1 smg 7 Z) and then

take the reciprocal of it to obtain the form (27) and coefficients a, in the denom-
inator.

polynomial in sin® @ (for the fast fading channel, it would be an
L N-th order polynomial). To evaluate the integral (27) in closed
form, we use the partial-fraction expansion technique given in
{18, Appendix 5A] as follows.

First we begin by factoring the denominator of (27) into terms
of the form (sin®@ + ¢;), for £ = 1,2,--- , N. This involves
finding the roots of an N-th order polynomial in sin? § either nu-
merically or analytically. Then, (27) can be expressed in product
form as

(sin’)¥ IAI ( sin @ )me
Z?’zo ay(sin® 9)¢ s \ce+ sin® @

where m, is the multiplicity of the root ¢, and E?:l me =
N. Applying the partial-fraction decomposition theorem to the
product form (28), we get

ﬁ sin? @ )
Cp + Sil’l2 0

=1

(28)

k
sin“ 8

A my
ZZAk (044- sin? 6) 29

£=1k=1

where the residual Ay, is given by [18, 5A.72]

. A 1 My
ame—
dx™e—k }:[1 (]_—I—Cn.’L') 1
n;a_éﬂ T=—c,
Akl = (ml - k)'cm‘ k (30)

Expansion (29) often allows integfeiﬁon to be performed on each
term separately by inspection. In fact, each term in (29) can be
separately integrated using a result found in [6], where

1 [m/? sin? @ F
P —— ) df
(ce, k) = 7r/ (cz—ksm 0>

s (V) (k)

(3D

Now using the partial-fraction form of the integrand in (29) to-
gether with (31), we obtain the exact-PEP in closed form as

1280 sin?e ™
UG am) @
0 —1 ¢y + sin

Amg

= Z Z AkgP(Cg, k)

=1 k=1

P(X - X)=
(32)

For the special case of distinct roots, i.e., m; = mg = -+ =
mpy = 1, the exact-PEP is given by
Cy
Cyp — Cpy, )

P(X - X)=

=

N =

33
Wl
LN
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00,01,02,03 @&

10,14,12,13

20,21,22,23

30,31,32,33 W

Fig. 1. Trellis diagram for the 4-state space-time code for QPSK constel-
lation.

B. Partial Fraction Expansion via Eigenvalue Decomposition

The main difficulty with the above technique is finding the
roots of an N-th order polynomial. Here we provide a rather
simple way to evaluate the exact-PEP in closed form using an
eigenvalue decomposition technique. However, this technique
also makes use of the partial fraction expansion technique given
in 18, Appendix 5A].

Let Z = 1Z, where Z is the matrix defined in (27). Suppose
matrix Z has K non-zero eigenvalues, including multiplicity,
AL, A2, -+, Ak, and the decomposition Z = ADA ™, where
A is the matrix of eigenvectors of Z and D is a diagonal matrix
with the eigenvalues of Z on the diagonal. Then, the integrand
in (26) can be written as

~1
)
0

_ —1
Y
det | T Z =
[e ( +4sin29 )}
K .2 me
sin“ 6
= —_ 33
H(AngsinQH) (33)

where 1, is the multiplicity of eigenvalue \¢. Note that the RHS
of (33) has the identical form as the RHS of (28). Therefore,
the partial-fraction expansion method, which we discussed in
Section IV-A can be directly applied to evaluate the exact-PEP
results in closed form.

V. ANALYTICAL PERFORMANCE EVALUATION: AN
EXAMPLE

As an example, we consider the 4-state QPSK space-time trel-
lis code (STTC) with two transmit antennas proposed by Tarokh
et al. [1]. The 4-state STTC code-is shown in Fig. 1 where the
labeling of the trellis branches follow [1]. The QPSK signal
points are mapped to the edge label symbols as shown in Fig. 1.
For this code, the exact-PEP results and approximate BEP re-
sults for ng = 1 and nr = 2 were presented in [4] and [6] for
i.i.d. fast and slow fading channels. In [7], the effects of spatial
fading correlation on the average BEP were studied for np = 1
over a slow fading channel. In this work, we compare the i.i.d.
channel performance results (without considering antenna con-
figurations) presented in [4] and [6] with our realistic exact-PEP
results for different antenna spacing, antenna placements and
scattering distribution parameters.

In [4] and [6], performances were obtained under the assump-
tion that the transmitted codeword is the all-zero codeword.
Here we also adopt the same assumption as we compare our re-
sults with their results. However, we are aware that space-time

Pairwise error probability - PEP

-6~ ideal channe! —without antenna conf.

—6— Tx antenna sep: 0.1 A

—#— Tx antenna sep: 0.2 %

—&~ Tx antenna sep: 0.5 &

—— Txantenna sep:  »
T T

\ \ L
0 2 4 6 8 10 32 14 16 i8 20
Average symbol SNR {dB)

Fig. 2. Exact pairwise error probability performance of the 4-state space-
time trellis code with 2-Tx antennas and 1-Rx antenna: Length 2 error
event, slow fading channel.

codes may, in general, be non-linear, i.e., the average BEP can
depend on the transmitted codeword.

For the 4-state STTC, we have the shortest error event path of
length H = 2, as illustrated by shading in Fig. 1 and

x-[1 1] =[5 7]

Note that X and X in (34) will be used in our simulations.

(34)

VI. EFFECT OF ANTENNA SEPARATION

First, we consider the effect of antenna separation on the
exact-PEP when the scattering environment is uncorrelated, i.e.,
FT = Isps,41 and FE = I5pr,+1 for the slow fading chan-
nel and FX = Typ, 41 and FE = Iy, oy for the fast fading
channel.

A. Slow Fading Channel

Consider the 4-state STTC with nT = 2 transmit antennas
and np = 1 receive antenna. In this case, we place the two
transmit antennas in a circular aperture of radius r (antenna sep-
aration = 2r), Since ng = 1, there will only be a single commu-
nication mode available at the receiver aperture. Hence J g = 1.

Fig. 2 shows the exact pairwise error probability performance
of the 4-state STTC for H = 2 and transmit antenna separations
0.1, 0.2\, 0.5, and A, where A is the wave-length. Also shown
in Fig. 2 for comparison is the exact-PEP for the i.i.d. slow fad-
ing channel (Rayleigh) corresponding to H = 2.

As we can see from the figure, the effect of antenna separation
on the exact-PEP is not significant when the transmit antenna
separation is 0.5 or higher. However, the effect is significant
when the transmit antenna separation is small. For example, at
PEP 1072, the realistic PEPs are 1 dB and 3 dB away from the
i.i.d. channel performance results for 0.2\ and 0.1 transmit an-
tenna separations, respectively. From these observations, we can
emphasize that the effect of antenna spacing on the performance
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Fig. 3. Exact PEP performance of the 4-state space-time trellis code
with 2-Tx antennas and n-Rx antennas: Length 2 error event, slow
fading channel.

of the 4-state STTC is minimum for higher antenna separations
whereas the effect is significant for smaller antenna separations.

A.1 Loss of Diversity Advantage

We now consider the diversity advantage of a space-time
coded system as the number of receive antennas increases while
the receive antenna array aperture radius remains fixed. Fig. 3
shows the exact-PEP of the 4-state STTC with two transmit an-
tennas and 1 receive antennas, where ng = 1,2, -, 10. The
two transmit antennas are placed in a circular aperture of radius
0.25\ (antenna separation® = 0.5)) and n g receive antennas are
placed in a uniform circular array antenna configuration with
radius 0.15). In this case, the distance between two adjacent
receive antenna elements is 0.3 sin(7/ng).

The slope of the performance curve on a log scale corresponds
to the diversity advantage of the code and the horizontal shift
in the performance curve corresponds to the coding advantage.
According to the code construction criteria given in [1], the di-
versity advantage promised by the 4-state STTC is 2np. With
the above antenna configuration setup, however, we observed
that the slope of each performance curve remains the same when
ng > 5, which results in zero diversity advantage improvement
for np > 5. Nevertheless, for np > 5, we still observed some
improvement in the coding gain, but the rate of improvement is
slower with the increase in number of receive antennas. Here
the loss of diversity gain is due to the fewer number of effec-
tive communication modes available at the receiver region than
the number of antennas available for reception. In this case,
from (44) in Appendix I, the receive aperture of radius 0.15\
corresponds to M = 2[we0.15] + 1 = 5 effective communi-
cation modes at the receive region. Therefore, when ng > 5,

5In a 3-dimensional isotropic scattering environment, antenna separation 0.5\
(first null of the order zero spherical Bessel function) gives zero spatial correla-
tion, but here we constraint our analysis to a 2-dimensional scattering environ-
ment. The spatial correlation function in a 2-dimensional isotropic scattering
environment is given by a Bessel function of the first kind. Therefore, antenna
separation A /2 does not give zero spatial correlation in a 2-dimensional isotropic
scattering environment.

—6- ULA-radius 0.15 X
—— UCA-radius 0.15 &

* ULA- radius .25 &
—— UCA- radius 0.25

Average symbel SNR (dB)

Fig. 4. The exact-PEP performance of the 4-state STTC with two trans-
mit and three receive antennas for UCA and ULA receive antenna
configurations: Length 2 error event, slow fading channel.

the diversity advantage of the code is determined by the num-
ber of effective communication modes available at the receiver
antenna region rather than the number of antennas available for
reception. That is, the point where the diversity loss occurred is
clearly related to the size of the antenna aperture, where smaller
apertures result in diversity loss of the code for lower number of
receive antennas, as proved analytically in [19].

A2 Effect of Antenna Configuration

We now compare the exact-PEP results of the 4-state STTC
for different antenna configurations at the receiver. For example,
we choose UCA and ULA antenna configurations.® Consider a
system with two transmit antennas and three receive antennas.
The two transmit antennas are placed half wavelength (A\/2) dis-
tance apart and the three receive antennas are placed within a
fixed circular aperture of radius r(= 0.15X,0.25)) as shown in
Fig. 4. The exact-PEP performance for the error event of length
two is also plotted in Fig 4.

From Fig. 4, it is observed that, the performance given by
the UCA antenna configuration outperforms that of the ULA
antenna configuration. For example, at PEP 1075, the perfor-
mance differences between UCA and ULA are 2.75 dB with
0.15\ receiver aperture radius and 1.25 dB with 0.25) receiver
aperture radius. Therefore, as we illustrated here, one can use
the realistic PEP expressions (24) and (26) to determine the best
antenna placement within a given region which gives the maxi-
mum performance gain available from a space-time code.

B. Fast Fading Channel

Consider the 4-state STTC with two transmit antennas and
two receive antennas, where the two transmit antennas are
placed in a circular aperture of radius (.25 (antenna separation
= 0.5)) and the two receive antennas are placed in a circular
aperture of radius r (antenna separation = 2r).

6The exact-PEP expressions we derived in this work can be applied to any
arbitrary antenna configuration.
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Fig. 5. Exact pairwise error probability performance of the 4-state space-
time trellis code with 2-Tx antennas and 2-Rx antennas-length two
error event: Fast fading channel.

Fig. 5 shows the exact pairwise error probability performance
of the 4-state STTC for H = 2 and receive antenna separations
0.1X, 0.2, and 0.5\. Also shown in Fig. 5 for comparison, is
the exact-PEP for the i.i.d. fast fading channel. Similar results
are observed as for the slow fading channel. For the fast fading
channel, the effect of antenna separation is minimum when the
antenna separation is higher and it is significant when the an-
tenna separation is smaller (< 0.5X). At 0.1\ receive antenna
separation, the performance loss is 3 dB and at 0.2 the perfor-
mance loss is 1 dB for PEP of 107°. Note that the performance
loss we observed here is mainly due to the antenna spacing.”

VII. EFFECT OF MODAL CORRELATION

In Section VI, we investigated the effect of antenna spac-
ing and antenna configurations on the exact-PEP of space-time
codes, assuming an uncorrelated scattering environment. In this
section, we study the non-isotropic scattering effects or modal
correlation effects on the exact-PEP of space-time codes.

On a fast fading channel environment, we assume that the
scattering gains change independently from symbol to symbol.
1t is also reasonable to assume that the statistics of the scatter-
ing channel remain constant over an interval of interest. Here
we take the interval of interest as the length of the space-time
codeword. Then, we have, R,, = Rforn = 1,2,---,L in
(14).

Using (3), we can define the modal correlation between com-
plex scattering gains as

’Ym’rrz’ —E{S@ ’nsflm }

Assume that the scattering from one direction is independent of
that from another direction for both the receiver and the trans-
mitter apertures. Then, the second-order statistics of the scatter-

7Antenna spacing and scattering distribution parameters such as mean
AOA/AOD and angular spread are the main contributors to spatial fading corre-
lation.

ing gain function g(¢, ) can be defined as
E {g(¢>, ©)g (¢, ¢ )}

where G(¢,9) = E{lg(¢,9)|*} with normalization
[ [G(¢,p)dpde = 1. With the above assumption, the modal

correlation coefficient, fyf;’fm, can be simplified to

= G($,0)6(¢— 6 )6(p — ¢ )

rymm/’//qu (p)@ i(L—¢") tpez(m m)¢d(pd¢

Then, the correlation between the ¢-th and ¢'-th modes at the
receiver region due to the m-th mode at the transmitter region is

given by
e = [Pactole

where Pg.(¢) = [G(¢, p)d¢ is the normalized azimuth power
distribution of the scatterers surrounding the receiver antenna
region. Here we see that modal correlation at the receiver is
independent of the mode selected from the transmitter region.

Similarly, we can write the correlation between the m-th and
m/-th modes at the transmitter as

T=%dy (35)

Voo = / Pro(@)e' " dg - (36)
where Pr,(¢) = [G(, ¢)dy is the normalized azimuth power
distribution at the transmitter region. As for the receiver modal
correlation, we can observe that modal correlation at the trans-
mitter is independent of the mode selected from the receiver
region. Note that, azimuth power distributions Pr. () and
Pre(¢) can be modeled using all common azimuth power distri-
butions such as uniform, Gaussian, Laplacian, Von-Mises, etc.

Denoting the p-th column of scattering matrix S as Sy, the
(2mpg + 1) X (2mp + 1) receiver modal correlation matrix can
be defined as

FR2E{s,s)}

where the (£, ¢')-th element of F™ is given by (35) above. Sim-
ilarly, we can write the transmitter modal correlation matrix as

F" = E{S}S,}

where S|, is the g-th row of S. The (m,m’)-th element of F"
is given by (36) and F” is a (2my + 1) x (2my + 1) matrix.
The correlation matrix of the scattering channel S can be ex-
pressed as the Kronecker product between the receiver modal
correlation matrix and the transmitter modal correlation matrix,

R=E{s'sl =FfoF". (37)
As aresult, the correlation between two distinct modal pairs can
be written as the product of corresponding modal correlations at
the transmitter and the receiver, i.e.,

N4
f}/m m! T

= VG . (38)
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Note that (38) holds only for class of scattering environments
where the power spectral density of the modal correlation func-
tion satisfies [15], [16]

G(¢, ¢) = Pra(¢)Pral9).

Also note that, (39) is the necessary condition that a channel
must satisfy in order to hold the realistic exact-PEP (24) and
(26) for the fast and slow fading channels, respectively.

It was shown in [20] that all azimuth power distribution
models give very similar correlation values for a given angu-
lar spread, especially for small antenna separations. Therefore,
without loss of generality, we restrict our investigation only to
the uniform limited azimuth power distribution, which is defined
as follows.

Uniform-limited azimuth power distribution (UL-APD):
When the energy is arriving/departing uniformly from/to a re-
stricted range of azimuth angles +/ around a mean angle of
arrival/departure wg € [—,7), the azimuth power distribution
is defined as [21]

(39

1

P(W) = Ea

lw —wo| < A (40)
where A represents the non-isotropic parameter of the azimuth
power distribution, which is related to the angular spread o
(standard deviation of the distribution). In this case, 0 = A/ V3.

Substituting (40) into (35) gives the receiver modal correla-

tion coefficient -

'722”, = sinc((£ — B’)Ar)e_i(l““ﬂ)“’0 41
where o is the mean AOA and A, is the non-isotropic parame-
ter of the azimuth power distribution. Similarly, the modal cor-
relation coefficient at the transmitter is found to be

yﬁfm, = sinc((m — m')At)ei(m—m/)% (42)
where ¢ is the mean AOD and A, is the non-isotropic parame-
ter of the azimuth power distribution.

A. Fast Fading Channel

Consider the 4-state STTC with two transmit antennas and
two receive antennas, where the two transmit antennas are sep-
arated by a distance of 0.5\. In Section VI-B, we observed
that the performance loss due to antenna separation is minimum
when the two receive antenna elements are placed at a distance
greater than 0.5). Therefore, to study the modal correlation ef-
fects on the exact-PEP over a fast fading channel,® we set the
receive antenna separation to 0.5\, For simplicity, here we only
consider the modal correlation effects at the receiver region and
assume that the effective communication modes available at the
transmitter region are uncorrelated, i.e., FT =71 QMp+1-

Fig. 6 shows the exact-PEP performances of the 4-state code
for various angular spreads o = {5°,30°,60°,180°} about a
mean AGCA ¢ = 0° from broadside, where the broadside angle
is defined as the angle perpendicular to the line connecting the

8We omit the performance results over a slow fading channel for the sake of
brevity.

AQAQ° from broadside

~%— ideal channel —w/o antenna conf .
—o— zeromodal correlatio n

oo
— - g =180 °Tsotropic R
107 T s — : : ‘

(] 2 4 13 8 10 12 14 16
Average symbol SNR (dB)

Fig. 6. Effect of receiver modal correlation on the exact-PEP of the 4-
state QPSK space-time trellis code with 2-Tx antennas and 2-Rx an-
tennas for the length 2 error event. Uniform limited power distribution
with mean angle of arrival 0° from broadside and angular spreads
o = {5°,30°, 60°, 180°}; fast fading channel.

two antennas. Note that ¢ = 180° represents the isotropic scat-
tering environment. The exact-PEP performance for the i.i.d.
fast fading channel (Rayleigh) is also plotted on the same graph
for comparison.

Fig. 6 suggests that the performance loss incurred due to the
modal correlation increases as the angular spread of the distribu-
tion decreases. For example, at PEP 1075, the realistic PEP per-
formance results obtained from (24) are 0.25 dB, 2.5 dB, 3.25
dB and 7.5 dB away from the i.i.d. channel performance re-
sults for angular spreads 180°,60°,30°, and 5°, respectively.
Therefore, in general, if the angular spread of the distribution is
closer to 180° (isotropic scattering), then the loss incurred due
to the modal correlation is insignificant, provided that the an-
tenna spacing is optimal. However, for moderate angular spread
values such as 60° and 30°, the performance loss is quite signif-
icant. This is due to the higher concentration of energy closer to
the mean AOA for small angular spreads. It is also observed that
for large angular spread values, the diversity order of the code
(slope of the performance curve) is preserved whereas for small
and moderate angular spread values, the diversity order of the
code is diminished.

Fig. 7 shows the PEP performance results of the 4-state STTC
for a mean AOA ¢y = 45° from broadside. Similar results are
observed as for the mean AQA ¢y = 0° case. Comparing Figs. 6
and 7 we observe that the performance loss is increased for all
angular spreads as the mean AOA moves away from broadside.
This can be justified by the reasoning that, as the mean AOA
moves away from broadside, there will be a reduction in the
angular spread exposed to the antennas and hence less signals
being captured.

Finally, we consider the exact-PEP results for the length two
error event against the receive antenna separation for a mean
AOA ¢y = 45° from broadside and angular spreads ¢ =
[5°,30°,180°]. The results are plotted in Fig. 8 for 8 dB and
10 dB SNRs.
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Fig. 7. Effect of receiver modal correlation on the exact-PEP of the 4-
state QPSK space-time trellis code with 2-Tx antennas and 2-Rx an-
tennas for the length 2 error event. Uniform limited power distribution
with mean angle of arrival 45° from broadside and angular spreads
o = {5°,30°,60°,180°}; fast fading channel.

It is observed that for a given SNR, the performance of the
space-time code is improved as the receive antenna separation
and the angular spread are increased. However, the performance
does not improve monotonically with the increase in receive an-
tenna separation. We also observed that when the angular spread
is quite small (e.g., 5°), we need to place the two receive antenna
elements at least several wavelengths apart in order to achieve
the maximum performance gain given by the 4-state STTC.

Comparison of Figs. 68 reveals that when the angular spread
of the surrounding azimuth power distribution is closer to 180°
(i.e., the scattering environment is near-isotropic), the perfor-
mance degradation of the code is mainly due to the insufficient
antenna spacing. Therefore, employing multiple antennas on a
mobile-unit (MU) will result in significant performance loss due
to the limited size of the MU.

Furthermore, we observed that (performance results are not
shown here) when there are more than two receive antennas in a
fixed receive aperture, the performance loss of the 4-state STTC
with decreasing angular spread is most pronounced for the ULA
antenna configuration when the mean AQA is closer to 90° (in-
line with the array). But, for the UCA antenna configuration, the
performance loss is insignificant as the mean AOA moves away
from broadside for all angular spreads. This suggests that the
UCA antenna configuration is less sensitive to change of mean
AOA compared to the ULA antenna configuration. Hence, the
UCA antenna configuration is best suited to employ a space-
time code.

Using the results we obtained thus far, we can claim that, in
general, space-time trellis codes are susceptible to spatial fading
correlation effects, in particular, when the antenna separation
and the angular spread are small.

B. Extension of PEP to Average Bit Error Probability

An approximation to the average bit error probability (BEP)
was given in [22] on the basis of accounting for error event paths

s AOQA-4S 7 from broadsid e

-0 zero—modal cort.

4 o=5°

—e— 0=30°
# - 5=180° — Isotropic

1073

PEP

0 05 1 15
Rx antenna separation { A )

Fig. 8. Exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx
antennas and 2-Rx antennas against the receive antenna separa-
tion. Uniform limited power distribution with mean angle of arrival
45° from broadside and angular spreads o = {5°,30°,180°}; fast
fading channel.

of lengths up to H as,

Py(E) = %Zq(x S XLP(X o X) @3
t

where b is the number of input bits per transmission, g(X —
X)) is the number of bit errors associated with the error event
t and P(X — X)), is the corresponding PEP. In [6], it was
shown that error event paths of lengths up to H are sufficient
to achieve a reasonably good approximation to the full upper
(union) bound that takes into account error event paths of all
lengths. For example, with the 4-state STTC, error event paths
of lengths up to H = 4 and H = 3 are sufficient for the slow and
fast fading channels, respectively.

The closed-form solution for average BEP of a space-time
code can be obtained by finding closed-form solutions for PEPs
associated with each error type, using one of the analytical tech-
niques given in Section IV. In previous sections, we investigate
the effects of antenna spacing, antenna geometry and modal cor-
relation on the exact-PEP of a space-time code over fast and
slow fading channels. The observations and claims which we
made there, are also valid for the BEP case as the BEPs are cal-
culated directly from PEPs. Therefore, to avoid repetition, we
do not discuss BEP performance results here.

VIII. CONCLUSION

Using an MGF-based approach, we have derived analytical
expressions for the exact-PEP of a space-time coded system over
spatially correlated fast and slow fading channels. Two ana-
lytical techniques are discussed which can be used to evaluate
the exact-PEPs in closed form. The analytical expressions we
derived fully account for antenna separation, antenna geometry
(uniform linear array, uniform grid array, uniform circular array,
etc.) and surrounding azimuth power distributions, both at the
receiver and the transmitter antenna array apertures. In practice,
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these analytical expressions can be used as a tool to estimate
or predict the performance of a space-time code under any an-
tenna configuration and surrounding azimuth power distribution
parameters. Based on these new PEP expressions, we showed
that space-time codes employed on multiple transmit and multi-
ple receive antennas are susceptible to spatial fading correlation
effects, particularly for small antenna separations and small an-
gular spreads.

APPENDICES

I. TRANSMIT AND RECEIVE ANTENNA ARRAY

CONFIGURATION MATRICES
Let u,, p = 1,2,--- ,ng be the position of p-th transmit
antenna relative to the transmit antenna array origin and vy, ¢ =
1,2,--- ,ng be the position of ¢g-th receive antenna relative to

the receive antenna array origin. Then,
j_mT (ul) jmT (ul)
j—mT (u2) jmT (uQ)
Jr = . i
J—va (unT) jmT (unT)

is the transmit antenna array configuration matrix and

jme(vl) ij(vl)

T—mg(v2) Tmr(v2)
T = : :

j——mR'('UnR) ij(vnR)

is the receive antenna array configuration matrix, where 7, (x)
is the spatial-to-mode function (SMF) which maps the antenna
location to the n-th mode of the region. The form which the
SMF takes is related to the shape of the scatterer-free antenna
region. For a circular region in 2-dimensional space, the SMF is
given by a Bessel function of the first kind [9] and for a spherical
region in 3-dimensional space, the SMF is given by a spherical
Bessel function [10]. For a prism-shaped region, the SMF is
given by a prolate spheroidal function [23]. Here, we consider
only the 2-dimensional scattering environment where antennas
are encompassed in scatterer-free circular apertures. Then, the
SMF is given by

Tn(w) £ T, (kfjw])eim(@w—m/2)

where J,(-) is the Bessel function of integer order n, vector
w = (||w|, ¢w) in polar coordinates is the antenna location
relative to the origin of the aperture which encloses the antennas,
k = 27/ X is the wave number with A being the wave length and
i=+v—1

The number of effective communication modes (M) avail-
able in a region is given by [11]

M 2 2[mer/A] +1 (44)

where r is the minimum radius of the antenna array aperture and
e =~ 2.7183.

1. PROOFS

The following three properties of Hermitian matrices will be
used to prove that G, in (10) and G in (20) are Hermitian.

Property 1: If H is any m x n matrix, then HH' and H' H
are Hermitian.

Property 2: If A is a Hermitian matrix and H is any matrix,
then HAH and H'AH are Hermitian.

Property 3: Kronecker product between two Hermitian ma-
trices are always Hermitian.

Proposition 1: Matrices G, = (J%JR)T®(J}332JT) and
G = (JhJn)
(T — &)@y, — ) and X5 = (X — X)(X — X)

Proof: From property-1, matrices J TRJ r- X and X A are
Hermitian. Therefore, property-2 implies that J r}w’&J 7 and
J}X AJr are Hermitian. Thus, from property-3, G, and G
are Hermitian. 0

® (J;XAJT) are Hermitian, where %} =
1
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