Though there is no agreement on the definition of analogical reasoning, there is no doubt that analogical reasoning is the means of mathematical knowledge construction. Mathematicians generally have a tendency or desire to find similarities between new and existing Ideas, and new and existing representations. They construct appropriate links to new ideas or new representations by focusing on common relational structures of mathematical situations rather than on superficial details. This focus is analogical reasoning at work in the construction of mathematical knowledge. Since analogical reasoning is the means by which mathematicians do mathematics and is close]y linked to measures of intelligence, it should be considered important in mathematics education. This study investigates how mathematicians used analogical reasoning, what role did it flay when they construct new concept or problem solving strategy.
This study was designed to explore the analogical reasoning and metaphoric understanding in typically developing children and language impaired children. 13 Language-impaired children were matched to 16 typically developing children on the basis of receptive vocabulary age. All 29 children were enrolled in the 1st to 3rd grade in regular elementary schools. All were administered analogical reasoning and metaphoric tasks. Results indicated that the children with language disabilities did not perform as well as the receptive vocabulary matched group on the two tasks. In addition, we found that both of children with and without language disabilities did not have relationship between analogical reasoning and metaphoric understanding.
The process of analogical reasoning can be conventionally summarized in five steps : Representation, Access, Mapping, Adaptation, Learning. The purpose of this study is to develop more detailed model for reason of analogies considering the distinct characteristics of the mathematical education based on the process of analogical reasoning which is already established. Ultimately, This model is designed to facilitate students to use analogical reasoning more productively. The process of developing model is divided into three steps. The frist step is to draft a hypothetical model by looking into historical example of Leonhard Euler(1707-1783), who was the great mathematician of any age and discovered mathematical knowledge through analogical reasoning. The second step is to modify and complement the model to reflect the characteristics of students' thinking response that proves and links analogically between the law of cosines and the Pythagorean theorem. The third and final step is to draw pedagogical implications from the analysis of the result of an experiment.
Synectics is one of several techniques used to enhance brainstorming by taking a more active role and introducing metaphor and structure into the process. It is unclear at what level of specificity this should be formulated as a pattern. This thesis reviews recent computational as well as experimental work on analogical reasoning based on synectics. New results regarding information processing of analogical reasoning stages, major computational models and recent attempts to compare these models are reviewed. Computational models are also discussed in the computational as well as cognitive psychology perspectives. Future directions in analogical reasoning research are proposed. The following import is the need to accommodate the typology and normal assessment in the concrete circumstances where actual reasoning and problem solving take place. In order to get to this end, we used computational models by Thagard who take the stand of ‘Computational Philosophy of Science’, which assumes ‘Weak AI’ to explicate what constitute the very pecularity of Analogical Reasoning.
The powerful role of analogical reasoning in discovering mathematics is well substantiated in the history of mathematics. Mathematically gifted students, thus, are encouraged to learn via in-depth exploration on their own based on analogical reasoning. In this study, 57 gifted students (31in the 7th and 26 8th grade) were asked to formulate or clarify analogy. Students produced fruitful constructs led by analogical reasoning. Participants in this study appeared to experience the deep thinking that is necessary to solve problems made with analogies, a process equivalent to the one that mathematicians undertake. The subjects had to reflect on prior knowledge and develop new concepts such as an orthogonal projection and a point of intersection of perpendicular lines based on analogical reasoning. All subjects were found adept at making meaningful analogues of a triangle since they all made use of meta-cognition when searching relations for analogies. In the future, methodologies including the development of tasks and teaching settings, measures to evaluate the depth of mathematic exploration through analogy, and research on how to promote education related to analogy for gifted students will enhance gifted student mathematics education.
Analogical reasoning is a mathematically useful way of thinking. By analogy reasoning, students can improve problem solving, inductive reasoning, heuristic methods and creativity. The purpose of this study is to analyze the analogical reasoning of preservice mathematics teachers while constructing quadratic curves defined by eccentricity. To do this, we produced tasks and 28 preservice mathematics teachers solved. The result findings are as follows. First, students could not solve a target problem because of the absence of the mathematical knowledge of the base problem. Second, although student could solve a base problem, students could not solve a target problem because of the absence of the mathematical knowledge of the target problem which corresponded the mathematical knowledge of the base problem. Third, the various solutions of the base problem helped the students solve the target problem. Fourth, students used an algebraic method to construct a quadratic curve. Fifth, the analysis method and potential similarity helped the students solve the target problem.
This paper researches the possibility of introducing Descartes' theorem to mathematically gifted students. Not only is Descartes' theorem logically equivalent to Euler's theorem but is hierarchically connected with Gauss-Bonnet theorem which is the core concept on differential geometry. It is possible to teach mathematically gifted students Descartes' theorem by generalizing mathematical property in solid geometry through analogical reasoning, that is, so in a polyhedrons the sum of the deficient angles is $720^\circ$ as in an polygon the sum of the exterior angles is $360^\circ$. This study introduces an alternative method of instruction that we enable mathematically gifted students to reinvent Descartes' theorem through analogical reasoning instead of deductive reasoning.
Kim, Wonsook;Kim, Youngmin;Seo, Hae-Ae;Park, Jongseok
Journal of Gifted/Talented Education
/
제23권5호
/
pp.817-833
/
2013
The study aims to analyze Thomas Young's problem solving processes of analogical reasoning during the formation of the interference theory of light, and to draw its implications for secondary science education, particularly for enhancing creativity in science. The research method employed in the study was literature review of the papers which Young himself had written about sound wave and property of light. His thinking processes and specific features in his thought that were obtained through analysis of his papers about light are as follows: Young reconsidered Newton's experiments and observations, and reinterpreted Newton's results in the new viewpoints. Through this analysis, Young discovered that Newton's interpretation about his own experiments and observations was faulty in a certain point of view and new interpretation is necessary. Based on the data, it is hypothesized that colors observed on thin plates and colors appeared repeatedly on Newton's ring are appeared because of the effect of light interference. Young used analogical reasoning during the process of inference of similarity between sound and light. And he formulated an hypothesis on the interference of light through using abductive reasoning from interference of water wave, and proved the hypothesis by constructing an creative experimental device, which is called a critical experiment. It is implicated that the analogical reasoning and experimental devices for explaining the light interference which Young created and used can be utilized for school science education enhancing creativity in science.
The main purpose of this essay is to shed light on the foundation of the core notion used in oriental medicine. Under the premise that the important notion of oriental medicine has its origin in the culture of the ancient china before B.C.$2^{\sim}1$, we will get to the source notion of oriental medicine by retrospecting the analogical thinking used in the course of forming the main notion of oriental medicine. For the source notion being in various domains, we must search so many domains for example the political system including the offical system, the economic system and so on. But in this essay, we will limit the domain concerned with combat.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.1274-1276
/
1993
We have designed a multiple-valued fuzzy Approximate Analogical-Reseaning system (AARS). The system uses a similarity measure of fuzzy sets and a threshold of similarity ST to determine whether a rule should be fired, with a Modification Function inferred from the Similarity Measure to deduce a consequent. Multiple-valued basic fuzzy blocks are used to construct the system. A description of the system is presented to illustrate the operation of the schema. The results of simulations show that the system can perform about 3.5 x 106 inferences per second. Finally, we compare the system with Yamakawa's chip which is based on the Compositional Rule of Inference (CRI) with Mamdani's implication.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.