• Title/Summary/Keyword: Analog-to-Digital Converter

Search Result 567, Processing Time 0.025 seconds

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF

Temperature Stable Time-to-Digital Converter (온도변화에 안정한 시간-디지털 변환 회로)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.799-804
    • /
    • 2012
  • To converter time information to digital information Time-to-Digital Converter(TDC) is designed by using analog delay elements. To obtain the temperature stable characteristics the circuit is designed and the operation of the designed circuit is confirmed by HSPICE. The characteristics variation of the designed delay element with temperature is from -0.18% to 0.126% compared to room temperature characteristics when the temperature is varied from $-20^{\circ}C$ tp $70^{\circ}C$. Time difference is from -0.18% to 0.12% compared to room temperature characteristic when the temperature is varied from $-20^{\circ}C$ tp $70^{\circ}C$. The time difference is simulated when the digital output is 15. However the time difference is from -1.09% to 1.28% in the TDC using temperature non-stable analog delay elements.

A Resistance Deviation-To-Time Interval Converter Based On Dual-Slope Integration

  • Shang, Zhi-Heng;Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • A resistance deviation-to-time interval converter based on dual-slope integration using second generation current conveyors (CCIIs) is designed for connecting resistive bridge sensors with a digital system. It consists of a differential integrator using CCIIs, a voltage comparator, and a digital control logic for controlling four analog switches. Experimental results exhibit that a conversion sensitivity amounts to $15.56{\mu}s/{\Omega}$ over the resistance deviation range of $0-200{\Omega}$ and its linearity error is less than ${\pm}0.02%$. Its temperature stability is less than $220ppm/^{\circ}C$ in the temperature range of $-25-85^{\circ}C$. Power dissipation of the converter is 60.2 mW.

Low-Power CMOS image sensor with multi-column-parallel SAR ADC

  • Hyun, Jang-Su;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.223-228
    • /
    • 2021
  • This work presents a low-power CMOS image sensor (CIS) with a multi-column-parallel (MCP) readout structure while focusing on improving its performance compared to previous works. A delta readout scheme that utilizes the image characteristics is optimized for the MCP readout structure. By simply alternating the MCP readout direction for each row selection, additional memory for the row-to-row delta readout is not required, resulting in a reduced area of occupation compared to the previous work. In addition, the bias current of a pre-amplifier in a successive approximate register (SAR) analog-to-digital converter (ADC) changes according to the operating period to improve the power efficiency. The prototype CIS chip was fabricated using a 0.18-㎛ CMOS process. A 160 × 120 pixel array with 4.4 ㎛ pitch was implemented with a 10-bit SAR ADC. The prototype CIS demonstrated a frame rate of 120 fps with a total power consumption of 1.92 mW.

The Remote Control of a Flyback Converter using an Inexpensive Microcontroller (저가형 마이크로 콘트롤러를 이용한 Flyback 컨버터의 원격제어)

  • 김윤서;양오
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.67-74
    • /
    • 2004
  • Differently from an existing analog control, because the digital control includes microprocessor basically, the digital control is enable to monitor internal parameters of DC-DC converter and to control output voltage remotely by communicating with a Windows based PC. These things are impossible in an analog control and there are more advantages in a digital control than an analog control. In this paper, with the advantages mentioned above, the feasibility of digital controlled DC-DC converter in low price is proposed. In order to implement these functions, it is used the inexpensive H8/3672 made by Renesas that has built in AD converters and PWM logic generators. The proposed digital controller is applied to a flyback converter that is designed to output DC 5[V] from DC 20∼30[V] and is remotely controlled to make variable outputs from DC 0[V] to 5[V] above in PC. The PWM controller adopts the PD controller in PID. In the last, the response characteristics of a step reference voltage and in a steady state are experimented to verify the feasibility and the usefulness of the proposed flyback converter that is implemented inexpensively.

10-Bit 200-MS/s Current-Steering DAC Using Data-Dependant Current-Cell Clock-Gating

  • Yang, Byung-Do;Seo, Bo-Seok
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.158-161
    • /
    • 2013
  • This letter proposes a low-power current-steering digital-to-analog converter (DAC). The proposed DAC reduces the clock power by cutting the clock signal to the current-source cells in which the data will not be changed. The 10-bit DAC is implemented using a $0.13-{\mu}m$ CMOS process with $V_{DD}$=1.2 V. Its area is $0.21\;mm^2$. It consumes 4.46 mW at a 1-MHz signal frequency and 200-MHz sampling rate. The clock power is reduced to 30.9% and 36.2% of a conventional DAC at 1.25-MHz and 10-MHz signal frequencies, respectively. The measured spurious free dynamic ranges are 72.8 dB and 56.1 dB at 1-MHz and 50-MHz signal frequencies, respectively.

Co-Simulation for Systematic and Statistical Correction of Multi-Digital-to-Analog-Convertor Systems

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • In this paper, a systematic and statistical calibration technique was implemented to calibrate a high-speed signal converting system containing multiple digital-to-analog converters (DACs). The systematic error (especially the imbalance between DACs) in the current combining network of the multi-DAC system was modeled and corrected by calculating the path coefficients for individual DACs with wideband reference signals. Furthermore, by applying a Kalman filter to suppress noise from quantization and clock jitter, accurate coefficients with minimum noise were identified. For correcting an arbitrary waveform generator with two DACs, a co-simulation platform was implemented to estimate the system degradation and its corrected performance. Simulation results showed that after correction with 4.8 Gbps QAM signal, the signal-to-noise-ratio improved by approximately 4.5 dB and the error-vector-magnitude improved from 4.1% to 1.12% over 0.96 GHz bandwidth.

Design Methodology of Analog Circuits for a CMOS Stereo 16-bit Δ$\Sigma$ DAC (CMOS Stereo 16-bit Δ$\Sigma$ DAC Analog단의 설계기법)

  • 김상호;채정석;박영진;손영철;조상준;김상민;김동명;김대정
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.93-96
    • /
    • 2001
  • A design methodology of analog circuits for a CMOS stereo 16-bit Δ$\Sigma$ DAC which are suitable for the digital audio applications is described. The limitations of Δ$\Sigma$ DAC exist in the performance of the 1-bit DAC and that of the smoothing filter. The proposed architecture for analog circuits contains the buffer between the digital modulator and the following analog stage and adopts the SCF (switched capacitor filter) and DSC (differential-to-single converter) scheme. In this paper, a guide line for the selection of the filter type for the SCF design in the Δ$\Sigma$ DAC is suggested through the analytical approaches.

  • PDF

A 9-bit ADC with a Wide-Range Sample-and-Hold Amplifier

  • Lim, Jin-Up;Cho, Young-Joo;Choi, Joong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.280-285
    • /
    • 2004
  • In this paper, a 9-bit analog-to-digital converter (ADC) is designed for optical disk drive (ODD) servo applications. In the ADC, the circuit technique to increase the operating range of the sample-and-hold amplifier is proposed, which can process the wide-varying input common-mode range. The algorithmic ADC structure is chosen so that the area can be significantly reduced, which is suitable for SoC integration. The ADC is fabricated in a 0.18-$\mu\textrm{m} $ CMOS 1P5M technology. Measurement results of the ADC show that SNDR is 51.5dB for the sampling rate of 6.5MS/s. The power dissipation is 36.3mW for a single supply voltage of 3.3V.

The Circuit Design for the DC Parameter Inspection of Memory Devices (메모리 소자의 DC parameter 검사회로 설계)

  • 김준식;주효남;전병준;이상신
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, we have developed the DC parameters test system which inspects the properties of DC parameters for semiconductor products. The developed system is interfaced by IBM-PC. It is consisted of CPLD part, ADC(Analog-to-Digital Converter), DAC(Digital-to-Analog Converter), voltage/current source, variable resistor and measurement part. In the proposed system, we have designed the constant voltage source and the constant current source in a part. In the comparison of results, the results of the simulation are very similar to the ones of the implementation.

  • PDF