• Title/Summary/Keyword: Analog digital converter

Search Result 588, Processing Time 0.027 seconds

Development of Gamma Camera System for Small Animal Imaging and Environmental Radiation Detection (소동물 영상화 및 환경 방사선 검출을 위한 감마카메라 개발)

  • Baek, Cheol-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.475-481
    • /
    • 2014
  • The aim of this work was to develop the gamma camera system for small animal gamma imaging and environmental radiation monitoring imaging using a parallel hole collimator and pinhole collimator. The small gamma camera system consists of a CsI(Tl) scintillation crystal with 6 mm in thickness and $50{\times}50mm$ in area coupled with a Hamamatsu H8500C PSPMT, are resistive charge divider, pre-amplifiers, charge amplifiers, nuclear instrument modules (NIMs), an analog to digital converter and a computer for control and display. We have developed a radiation monitoring system composed of a combined pinhole gamma camera and a charge-coupled devices (CCD) camera. The results demonstrated that the parallel hole collimator and pinhole collimator gamma camera designed in this study could be utilized to perform small animal imaging and environmental radiation monitoring system. Consequently in this paper, we proved that our gamma detector system is reliable for a gamma camera which can be used as small animal imaging and environmental radiation monitoring system.

An Enhancement of Speaker Location System Using the Low-frequency Phase Restoration Algorithm and Its Implementation (저주파 위상 복원 알고리듬을 이용한 화자 위치 추적 시스템의 성능 개선과 구현)

  • 이학주;차일환;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.22-28
    • /
    • 2001
  • This paper describes the implementation of a robust speaker position location system using the voice signal received by microphone array. To be robust to the reverberation which is the major factor of the performance degradation, low-frequency phase restoration algorithm which eliminates the influence of reverberations using the low-frequency information of the CPSP function is proposed. The implemented real-time system consists of a general purpose DSP (TMS320C31 of Texas instruments), analog part which contains amplifiers and filters, and digital part which is composed of the external memory and 12-bit A/D converter. In the real conference room environment, the implemented system that was constructed by the proposed algorithms showed better performance than the conventional system. The error of the TDOA estimation reduced more than 15 samples.

  • PDF

Development of High Speed Peak-hold Circuit for Gamma-ray (감마선용 고속 피크홀드회로의 개발)

  • Choi, Ki-seong;Che, Gyu-shik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.612-616
    • /
    • 2016
  • Gamma-ray must be detected and processed immedietely after generation of it in the circumstances where it exists. Software methology may be used to process randomly generated signals, but its memory size and processing time become large. By the way, the hardware circuit to detect randomly generated signals is generalized in industrial site, while those circuits are not able to answer to the cases whose amplitude are very small and also speed high. We researched and developed hardware based peak-hold circuit that is able to detect peaks of gamma-ray signals through direct reading out their values by ADC at the time of maximum reaching for the small amplitude and high speed signals, and proposed and estimated its results in this paper. This peak-hold circuit is adequate to use in the radiation circumstances in which the gamma-rays are heavy because its circuit can catch high speed signals efficiently without software signal processing supports.

A 12b 100 MS/s Three-Step Hybrid Pipeline ADC Based on Time-Interleaved SAR ADCs

  • Park, Jun-Sang;An, Tai-Ji;Cho, Suk-Hee;Kim, Yong-Min;Ahn, Gil-Cho;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.189-197
    • /
    • 2014
  • This work proposes a 12b 100 MS/s $0.11{\mu}m$ CMOS three-step hybrid pipeline ADC for high-speed communication and mobile display systems requiring high resolution, low power, and small size. The first stage based on time-interleaved dual-channel SAR ADCs properly handles the Nyquist-rate input without a dedicated SHA. An input sampling clock for each SAR ADC is synchronized to a reference clock to minimize a sampling-time mismatch between the channels. Only one residue amplifier is employed and shared in the proposed ADC for the first-stage SAR ADCs as well as the MDAC of back-end pipeline stages. The shared amplifier, in particular, reduces performance degradation caused by offset and gain mismatches between two channels of the SAR ADCs. Two separate reference voltages relieve a reference disturbance due to the different operating frequencies of the front-end SAR ADCs and the back-end pipeline stages. The prototype ADC in a $0.11{\mu}m$ CMOS shows the measured DNL and INL within 0.38 LSB and 1.21 LSB, respectively. The ADC occupies an active die area of $1.34mm^2$ and consumes 25.3 mW with a maximum SNDR and SFDR of 60.2 dB and 69.5 dB, respectively, at 1.1 V and 100 MS/s.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Range-Scaled 14b 30 MS/s Pipeline-SAR Composite ADC for High-Performance CMOS Image Sensors

  • Park, Jun-Sang;Jeong, Jong-Min;An, Tai-Ji;Ahn, Gil-Cho;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • This paper proposes a low-power range-scaled 14b 30 MS/s pipeline-SAR composite ADC for high-performance CIS applications. The SAR ADC is employed in the first stage to alleviate a sampling-time mismatch as observed in the conventional SHA-free architecture. A range-scaling technique processes a wide input range of 3.0VP-P without thick-gate-oxide transistors under a 1.8 V supply voltage. The first- and second-stage MDACs share a single amplifier to reduce power consumption and chip area. Moreover, two separate reference voltage drivers for the first-stage SAR ADC and the remaining pipeline stages reduce a reference voltage disturbance caused by the high-speed switching noise from the SAR ADC. The measured DNL and INL of the prototype ADC in a $0.18{\mu}m$ CMOS are within 0.88 LSB and 3.28 LSB, respectively. The ADC shows a maximum SNDR of 65.4 dB and SFDR of 78.9 dB at 30 MS/s, respectively. The ADC with an active die area of $1.43mm^2$ consumes 20.5 mW at a 1.8 V supply voltage and 30 MS/s, which corresponds to a figure-of-merit (FOM) of 0.45 pJ/conversion-step.

A Stereo Audio DAC with Asymmetric PWM Power Amplifier (비대칭 펄스 폭 변조 파워-앰프를 갖는 스테레오 오디오 디지털-아날로그 변환기)

  • Lee, Yong-Hee;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.44-51
    • /
    • 2008
  • A stereo audio digital-to-analog converter (DAC) with a power amplifier using asymmetric pulse-width modulation (PWM) is presented. To adopt class-D amplifier mainly used in high-power audio appliances for head-phones application, this work analyzes the noise caused by the inter-channel interference during the integration and optimizes the design of the sigma-delta modulator to decrease the performance degradation caused by the noise. The asymmetric PWM is implemented to reduce switching noise and power loss generated from the power amplifier. This proposed architecture is fabricated in 0.13-mm CMOS technology. The proposed audio DAC including the power amplifier with single-ended output achieves a dynamic range (DR) of 95-dB dissipating 4.4-mW.

High Frame Rate CMOS Image Sensor with Column-wise Cyclic ADC (컬럼 레벨 싸이클릭 아날로그-디지털 변환기를 사용한 고속 프레임 레이트 씨모스 이미지 센서)

  • Lim, Seung-Hyun;Cheon, Ji-Min;Lee, Dong-Myung;Chae, Young-Cheol;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.52-59
    • /
    • 2010
  • This paper proposes a high-resolution and high-frame rate CMOS image sensor with column-wise cyclic ADC. The proposed ADC uses the sharing techniques of OTAs and capacitors for low-power consumption and small silicon area. The proposed ADC was verified implementing the prototype chip as QVGA image sensor. The measured maximum frame rate is 120 fps, and the power consumption is 130 mW. The power supply is 3.3 V, and the die size is $4.8\;mm\;{\times}\;3.5\;mm$. The prototype chip was fabricated in a 2-poly 3-metal $0.35-{\mu}m$ CMOS process.

Design and Fabrication of the Ka-Band Receive Module for Millimeter Wave Seeker (밀리미터파 탐색기를 위한 Ka-대역 수신기 모듈의 설계 및 제작)

  • Yang, Seong-Sik;Lim, Ju-Hyun;Song, Sung-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • In this paper, we introduced the design technique about a Ka band receive module for millimeter wave seekers. The receiver module consists of a waveguide, circulator and transition for antenna connection, and a limiter and gain control amplifier for receiver protection. This module is comprised of a sum, azimuth and elevation channel for receiving monopules signal, and a SLB channel for the acquisition of jamming signal. In this paper, receiver gain and range of gain control dependent on ADC nonlinear characteristic was analyzed and designed for wide dynamic range receive. In the test result of the fabricated Ka-band receive, the frequency band is 1 GHz, the noise figure is as low as 8.2 dB, the gain is $56{\pm}2dB$, the dynamic range is 135 dB, the gain congtrol is more than 86 dB, the channel isolation is more than 35 dB.

Incremental Delta-Sigma Analog to Digital Converter for Sensor (센서용 Incremental 델타-시그마 아날로그 디지털 변환기 설계)

  • Jeong, Jinyoung;Choi, Danbi;Roh, Jeongjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.148-158
    • /
    • 2012
  • This paper presents the design of the incremental delta-sigma ADC. The proposed circuit consists of pre-amplifier, S & H circuit, MUX, delta-sigma modulator, and decimation filter. Third-order discrete-time delta-sigma modulator with 1-bit quantization were fabricated by a $0.18{\mu}m$ CMOS technology. The designed circuit show that the modulator achieves 87.8 dB signal-to-noise and distortion ratio (SNDR) over a 5 kHz signal bandwidth and differential nonlinearity (DNL) of ${\pm}0.25$ LSB, integral nonlinearity (INL) of ${\pm}0.2$ LSB. Power consumption of delta-sigma modulator is $941.6{\mu}W$. It was decided that N cycles are 200 clock for 16-bits output.