• Title/Summary/Keyword: Analog circuits

Search Result 354, Processing Time 0.03 seconds

An OTA with Positive Feedback Bias Control for Power Adaptation Proportional to Analog Workloads

  • Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • This paper reports an adaptive positive feedback bias control technique for operational transconductance amplifiers to adjust the bias current based on the output current monitored by a current replica circuit. This technique enables operational transconductance amplifiers to quickly adapt their power consumption to various analog workloads when they are configured with negative feedback. To prove the concept, a test voltage follower is fabricated in $0.5-{\mu}m$ CMOS technology. Measurement result shows that the power consumption of the test voltage follower is approximately linearly proportional to the load capacitance, the signal frequency, and the signal amplitude for sinusoidal inputs as well as square pulses.

Development of RSFQ Logic Circuits and Delay Time Considerations in Circuit Design (RSFQ 논리회로의 개발과 회로설계에 대한 지연시간 고려)

  • Kang, J.H.;Kim, J.Y.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.157-161
    • /
    • 2008
  • Due to high speed operations and ultra low power consumptions RSFQ logic circuit is a very good candidate for future electronic device. The focus of the RSFQ circuit development has been on the advancement of analog-to-digital converters and microprocessors. Recent works on RSFQ ALU development showed the successful operation of an 1-bit block of ALU at 40 GHz. Recently, the study of an RSFQ analog-to-digital converter has been extended to the development of a single chip RF digital receiver. Compared to the voltage logic circuits, RSFQ circuits operate based on the pulse logic. This naturally leads the circuit structure of RSFQ circuit to be pipelined. Delay time on each pipelined stage determines the ultimate operating speed of the circuit. In simulations, a two junction Josephson transmission line's delay time was about 10 ps, a splitter's 14.5 ps, a switch's 13 ps, a half adder's 67 ps. Optimization of the 4-bit ALU circuit has been made with delay time consideration to operate comfortably at 10 GHz or above.

  • PDF

Fault Classification in Phase-Locked Loops Using Back Propagation Neural Networks

  • Ramesh, Jayabalan;Vanathi, Ponnusamy Thangapandian;Gunavathi, Kandasamy
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.546-554
    • /
    • 2008
  • Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge-pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%.

  • PDF

Time-Domain Analog Signal Processing Techniques

  • Kang, Jin-Gyu;Kim, Kyungmin;Yoo, Changsik
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.2
    • /
    • pp.64-73
    • /
    • 2020
  • As CMOS technology scales down, the design of analog signal processing circuit becomes far more difficult because of steadily decreasing supply voltage and smaller intrinsic gain of transistors. With sub-1V supply voltage, the conventional analog signal processing relying on high-gain amplifiers is not an effective solution and different approach has to be sought. One of the promising approaches is "time-domain analog signal processing" which exploits the improving switching speed of transistors in a scaled CMOS technology. In this paper, various time-domain analog signal processing techniques are explained with some experimental results.

Surpassing Tradeoffs by Separation: Examples in Transmission Line Resonators, Phase-Locked Loops, and Analog-to-Digital Converters

  • Sun, Nan;Andress, William F.;Woo, Kyoung-Ho;Ham, Don-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.210-220
    • /
    • 2008
  • We review three examples (an on-chip transmission line resonator [1], a phase-locked loop [2], and an analog-to-digital converter [3]) of design tradeoffs which can in fact be circumvented; the key in each case is that the parameters that seem to trade off with each other are actually separated in time or space. This paper is an attempt to present these designs in such a way that this common approach can hopefully be applied to other circuits. We note reader that this paper is not a new contribution, but a review in which we highlight the common theme from our published works [1-3]. We published a similar paper [4], which, however, used only two examples from [1] and [2]. With the newly added content from [3] in the list of our examples, the present paper offers an expanded scope.

Efficient Signature-Driven Self-Test for Differential Mixed-Signal Circuits

  • Kim, Byoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.713-718
    • /
    • 2016
  • Predicting precise specifications of differential mixed-signal circuits is a difficult problem, because analytically derived correlation between process variations and conventional specifications exhibits the limited prediction accuracy due to the phase unbalance, for most self-tests. This paper proposes an efficient prediction technique to provide accurate specifications of differential mixed-signal circuits in a system-on-chip (SoC) based on a nonlinear statistical nonlinear regression technique. A spectrally pure sinusoidal signal is applied to a differential DUT, and its output is fed into another differential DUT through a weighting circuitry in the loopback configuration. The weighting circuitry, which is employed from the previous work [3], efficiently produces different weights on the harmonics of the loopback responses, i.e., the signatures. The correlation models, which map the signatures to the conventional specifications, are built based on the statistical nonlinear regression technique, in order to predict accurate nonlinearities of individual DUTs. In production testing, once the efficient signatures are measured, and plugged into the obtained correlation models, the harmonic coefficients of DUTs are readily identified. This work provides a practical test solution to overcome the serious test issue of differential mixed-signal circuits; the low accuracy of analytically derived model is much lower by the errors from the unbalance. Hardware measurement results showed less than 1.0 dB of the prediction error, validating that this approach can be used as production test.

Development of Digital Vacuum Pressure Sensor Using MEMS Analog Pirani Gauge

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.232-236
    • /
    • 2017
  • A digital vacuum pressure sensor is designed, fabricated, and characterized using a packaged MEMS analog Pirani gauge. The packaged MEMS analog Pirani gauge requires a current source to heat up a heater in the Pirani gauge. To investigate the feasibility of digitization for the analog Pirani gauge, its implementation is performed with a zero-temperature coefficient current source and microcontroller that are commercially available. The measurement results using the digital vacuum pressure sensor showed that its operating range is 0.05-760 Torr, which is the same as the measurement results of the packaged MEMS analog pressure sensor. The results confirm that it is feasible to integrate the analog Pirani gauge with a commercially available current source and microcontroller. The successful hybrid integration of the analog Pirani gauge and digital circuits is an encouraging result for monolithic integration with a precision current source and ADCs in the state of CMOS dies.

The Low Voltage Analog Multiplier Using The Bulk-driven MOSFET Techniques (Bulk-Driven 기법을 이용한 저전압 Analog Multiplier)

  • 문태환;권오준;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.301-304
    • /
    • 2001
  • The analog multiplier is very useful building block in many circuits such as filter, frequency-shifter, and modulators. In recent year, The main design issue of circuit designer is low-voltage/low-power system design, because of all systems are recommended very integrated system and portable system In this paper, the proposed the four-quadrant analog multiplier is using the bulk-driven techniques. The bulk-driven technique is very useful technique in low-voltage system, compare with gate-driven technique. therefore the proposed analog multiplier is operated in 1V supply voltage. And the proposed analog multiplier is low power dissipation compare with the others. therefor the proposed analog multiplier is convenient in low-voltage/low-power in system.

  • PDF

고속정보 전파특성을 갖는 실시간 비터비 디코더

  • Kim, Jong-Man;Sin, Dong-Yong;Seo, Beom-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.3-3
    • /
    • 2010
  • The Characteristics of Digital Vterbi Decoder utilizing the analog parallel processing circuit technology is proposed. The Analog parallel structure of the viterbi decoder acted by a replacement of the conventional digital viterbi Decoder is progressing fastly. The proposed circuits design han, low distortion, high accuracy over the previous implementation and dynamic programming.

  • PDF

Analog Circuit Modelings in Behavioral Level using Verilog-A (Verilog-A를 이용한 행위수준에서의 아날로그 회로 모델링)

  • 이길재;김태련;채상훈;정희범
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.212-215
    • /
    • 2000
  • This paper introduces to design analog circuits with Verilog-A. It is a tool for design and simulation of analog ICs in behavioral level. Verilog-A has been already established standard and used to IP development in USA. We have proved the possibility of Verilog-A by comparing with measurement data of a fabricated 235MHz PLL circuit. This paper also describes another advantage of Verilog-A.

  • PDF