• Title/Summary/Keyword: Amkor

Search Result 42, Processing Time 0.025 seconds

B2B Applications of Customer Equity Measurement Model (고객생애가치 측정모형의 B2B 비즈니스 적용연구)

  • Jung, Heon-Soo;Park, Sung-Ho
    • Korean Management Science Review
    • /
    • v.27 no.3
    • /
    • pp.197-211
    • /
    • 2010
  • This research applies Blattberg's CE (customer equity) model to B2B business context. Through the model we estimate customer lifetime value of a Korean semiconductor manufacturer. The results show that Blattberg model has limiting applicability to B2B business context. To overcome the limits, several suggestions were made. The main suggestion was predicting maintenance costs for different customers groups and including decision variables regarding marketing costs that would help building a differentiated CE model for the B2B business context.

Effect of Thermal Aging on Intermetallic Compound Growth Kinetics of Au Stud Bump (Au stud 범프의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Microstructural evolution and the intermetallic compound (IMC) growth kinetics in an Au stud bump were studied via isothermal aging at 120, 150, and $180^{\circ}C$ for 300hrs. The $AlAu_4$ phase was observed in an Al pad/Au stud interface, and its thickness was kept constant during the aging treatment. AuSn, $AuSn_2,\;and\;AuSn_4$ phases formed at interface between the Au stud and Sn. $AuSn_2,\;AuSn_2/AuSn_4$, and AuSn phases dominantly grew as the aging time increased at $120^{\circ}C,\;150^{\circ}C,\;and\;180^{\circ}C$, respectively, while $(Au,Cu)_6Sn_5/Cu_3Sn$ phases formed at Sn/Cu interface with a negligible growth rate. Kirkendall voids formed at $AlAu_4/Au$, Au/Au-Sn IMC, and $Cu_3Sn/Cu$ interfaces and propagated continuously as the time increased. The apparent activation energy for the overall growth of the Au-Sn IMC was estimated to be 1.04 eV.

Effect of Ion-beam Pre-treatment on the Interfacial Adhesion of Sputter-deposited Cu film on FR-4 Substrate (이온빔 전처리가 스퍼터 증착된 Cu 박막과 FR-4 기판 사이의 계면접착력에 미치는 영향)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Ki-Wook;Kim, Jae-Dong;Kim, Do-Geun;Lee, Gun-Hwan;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The effects of $Ar/O_2$ ion-beam pre-treatment conditions on the interfacial adhesion energy of sputterdeposited Cu thin film to FR-4 substrate were systematically investigated in order to understand the interfacial bonding mechanism for practical application to advanced chip-in-substrate package systems. Measured peel strength increases from $45.8{\pm}5.7g/mm$ to $61.3{\pm}2.4g/mm$ by $Ar/O_2$ ion-beam pre-treatment with anode voltage of 64 V. Interfacial bonding mechanism between sputter-deposited Cu film and FR-4 substrate seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical bonding intensity between carbon and oxygen at FR-4 surface increases due to $Ar/O_2$ ion-beam pretreatment, which seems to be related to the strong adhesion energy between sputter-deposited Cu film and FR-4 substrate.

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

Quantitative Evaluation Method for Etch Sidewall Profile of Through-Silicon Vias (TSVs)

  • Son, Seung-Nam;Hong, Sang Jeen
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.617-624
    • /
    • 2014
  • Through-silicon via (TSV) technology provides much of the benefits seen in advanced packaging, such as three-dimensional integrated circuits and 3D packaging, with shorter interconnection paths for homo- and heterogeneous device integration. In TSV, a destructive cross-sectional analysis of an image from a scanning electron microscope is the most frequently used method for quality control purposes. We propose a quantitative evaluation method for TSV etch profiles whereby we consider sidewall angle, curvature profile, undercut, and scallop. A weighted sum of the four evaluated parameters, nominally total score (TS), is suggested for the numerical evaluation of an individual TSV profile. Uniformity, defined by the ratio of the standard deviation and average of the parameters that comprise TS, is suggested for the evaluation of wafer-to-wafer variation in volume manufacturing.

Technologies for RF System in Package (SIP)

  • Mathews, Doug
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.19-39
    • /
    • 2003
  • Embedded Laminate Embedded RF Functional Blocks.Base Library of Laminate Embedded Filters and Baluns developed for 2.4GHz Applications -S-Parameters are provided at connection points -Utilizes a low cost 2 core construction.Statistical Variation Study in Report Phase.Measurements over variants show solid performance.Filters and Baluns are available for customer use.Laminate Embedded RF Functions - Various Filters, BALUNs, couplers, etc. for Bluetooth, 802.11, and Cellular.LTCC Embedded RF Functions - Various Filters, BALLNs, Diplexers, Antenna Switches, couplers, etc. for Bluetooth, 802.11, and Cellular.Eulbedded Passives - Various Inductor topologies Performance different than ideal or discrete inductor Must look at inductor performance in overall RF function - Working on embedded ceramic capacitors in laminate . Embedded Shields - Program in place to identify and define key design rules

  • PDF

Development Trends in Advanced Packaging Technology of Global Foundry Big Three (글로벌 파운드리 Big3의 첨단 패키징 기술개발 동향)

  • H.S. Chun;S.S. Choi;D.H. Min
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.98-106
    • /
    • 2024
  • Advanced packaging is emerging as a core technology owing to the increasing demand for multifunctional and highly integrated semiconductors to achieve low power and high performance following digital transformation. It may allow to overcome current limitations of semiconductor process miniaturization and enables single packaging of individual devices. The introduction of advanced packaging facilitates the integration of various chips into one device, and it is emerging as a competitive edge in the industry with high added value, possibly replacing traditional packaging that focuses on electrical connections and the protection of semiconductor devices.

Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump (Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Growth kinetics of intermetallic compound (IMC) at various interface in Cu pillar bump during aging have been studied by thermal aging at 120, 150 and $165^{\circ}C$ for 300h. In result, $Cu_6Sn_5\;and\;Cu_3Sn$ were observed in the Cu pillar/SnPb interface and IMC growth followed parabolic law with increasing aging temperatures and time. Also, growth kinetics of IMC layer was faster for higher aging temperature with time. Kirkendall void formed at interface between Cu pillar and $Cu_3Sn$ as well as within the $Cu_3Sn$ layer and propagated with increasing time. $(Cu,Ni)_6Sn_5$ formed at interface between SnPb and Ni(P) after reflow and thickness change of $(Cu,Ni)_6Sn_5$ didn't observe with aging time. The apparent activation energies for growth of total $(Cu_6Sn_5+Cu_3Sn),\;Cu_6Sn_5\;and\;Cu_3Sn$ intermetallics from measurement of the IMC thickness with thermal aging temperature and time were 1.53, 1.84 and 0.81 eV, respectively.

  • PDF

Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump (Cu pillar 범프의 금속간화합물 성장과 계면접착에너지에 관한 연구)

  • Lim, Gi-Tae;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2008
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $150^{\circ}C,\;5{\times}10^4\;A/cm^2$ conditions, respectively, in order to compare the growth kinetics of intermetallic compound(IMC) in Cu pillar bump. The quantitative interfacial adhesion energy with annealing was measured by using four-point bending strength test in order to assess the effect of IMC growth on the mechanical reliability of Cu pillar bump. Only $Cu_6Sn_5$ was observed in the Cu pillar/Sn interface after reflow. However, $Cu_3Sn$ formed and grew at Cu pillar/$Cu_6Sn_5$ interface with increasing annealing and stressing time. The growth kinetics of total($Cu_6Sn_5+Cu_3Sn$) IMC changed when all Sn phases in Cu pillar bump were exhausted. The complete consumption time of Sn phase in electromigration condition was faster than that in annealing condition. The quantitative interfacial adhesion energy after 24h at $180^{\circ}C$ was $0.28J/m^2$ while it was $3.37J/m^2$ before annealing. Therefore, the growth of IMC seem to strongly affect the mechanical reliability of Cu pillar bump.

  • PDF

Intermetallic Compound Growth Characteristics of Cu/thin Sn/Cu Bump for 3-D Stacked IC Package (3차원 적층 패키지를 위한 Cu/thin Sn/Cu 범프구조의 금속간화합물 성장거동분석)

  • Jeong, Myeong-Hyeok;Kim, Jae-Won;Kwak, Byung-Hyun;Kim, Byoung-Joon;Lee, Kiwook;Kim, Jaedong;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.180-186
    • /
    • 2011
  • Isothermal annealing and electromigration tests were performed at $125^{\circ}C$ and $125^{\circ}C$, $3.6{\times}10_4A/cm^2$ conditions, respectively, in order to compare the growth kinetics of the intermetallic compound (IMC) in the Cu/thin Sn/Cu bump. $Cu_6Sn_5$ and $Cu_3Sn$ formed at the Cu/thin Sn/Cu interfaces where most of the Sn phase transformed into the $Cu_6Sn_5$ phase. Only a few regions of Sn were not consumed and trapped between the transformed regions. The limited supply of Sn atoms and the continued proliferation of Cu atoms enhanced the formation of the $Cu_3Sn$ phase at the Cu pillar/$Cu_6Sn_5$ interface. The IMC thickness increased linearly with the square root of annealing time, and increased linearly with the current stressing time, which means that the current stressing accelerated the interfacial reaction. Abrupt changes in the IMC growth velocities at a specific testing time were closely related to the phase transition from $Cu_6Sn_5$ to $Cu_3Sn$ phases after complete consumption of the remaining Sn phase due to the limited amount of the Sn phase in the Cu/thin Sn/Cu bump, which implies that the relative thickness ratios of Cu and Sn significantly affect Cu-Sn IMC growth kinetics.