DOI QR코드

DOI QR Code

Intermetallic Compound Growth Characteristics of Cu/thin Sn/Cu Bump for 3-D Stacked IC Package

3차원 적층 패키지를 위한 Cu/thin Sn/Cu 범프구조의 금속간화합물 성장거동분석

  • Jeong, Myeong-Hyeok (School of Material Science and Engineering, Andong National University) ;
  • Kim, Jae-Won (School of Material Science and Engineering, Andong National University) ;
  • Kwak, Byung-Hyun (School of Material Science and Engineering, Andong National University) ;
  • Kim, Byoung-Joon (Department of Materials Science & Engineering, Seoul National University) ;
  • Lee, Kiwook (R&D Center Amkor Technology Korea Inc.) ;
  • Kim, Jaedong (R&D Center Amkor Technology Korea Inc.) ;
  • Joo, Young-Chang (Department of Materials Science & Engineering, Seoul National University) ;
  • Park, Young-Bae (School of Material Science and Engineering, Andong National University)
  • 정명혁 (안동대학교 신소재공학부 청정.에너지 소재기술 연구센터) ;
  • 김재원 (안동대학교 신소재공학부 청정.에너지 소재기술 연구센터) ;
  • 곽병현 (안동대학교 신소재공학부 청정.에너지 소재기술 연구센터) ;
  • 김병준 (서울대학교 재료공학부) ;
  • 이기욱 (앰코테크놀로지코리아 기술연구소) ;
  • 김재동 (앰코테크놀로지코리아 기술연구소) ;
  • 주영창 (서울대학교 재료공학부) ;
  • 박영배 (안동대학교 신소재공학부 청정.에너지 소재기술 연구센터)
  • Received : 2010.09.30
  • Published : 2011.02.25

Abstract

Isothermal annealing and electromigration tests were performed at $125^{\circ}C$ and $125^{\circ}C$, $3.6{\times}10_4A/cm^2$ conditions, respectively, in order to compare the growth kinetics of the intermetallic compound (IMC) in the Cu/thin Sn/Cu bump. $Cu_6Sn_5$ and $Cu_3Sn$ formed at the Cu/thin Sn/Cu interfaces where most of the Sn phase transformed into the $Cu_6Sn_5$ phase. Only a few regions of Sn were not consumed and trapped between the transformed regions. The limited supply of Sn atoms and the continued proliferation of Cu atoms enhanced the formation of the $Cu_3Sn$ phase at the Cu pillar/$Cu_6Sn_5$ interface. The IMC thickness increased linearly with the square root of annealing time, and increased linearly with the current stressing time, which means that the current stressing accelerated the interfacial reaction. Abrupt changes in the IMC growth velocities at a specific testing time were closely related to the phase transition from $Cu_6Sn_5$ to $Cu_3Sn$ phases after complete consumption of the remaining Sn phase due to the limited amount of the Sn phase in the Cu/thin Sn/Cu bump, which implies that the relative thickness ratios of Cu and Sn significantly affect Cu-Sn IMC growth kinetics.

Keywords

Acknowledgement

Supported by : 산업기술연구회

References

  1. J. R. Lloyd, J. Phys. D. Appl. Phys. 32, 109 (1999).
  2. K. N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).
  3. T. S. Oh, K. Y. Lee, Y. H. Lee, and B. Y. Jung, Met. Mater. Int. 15, 479 (2009). https://doi.org/10.1007/s12540-009-0479-8
  4. J. H. Cho, E. J. Yoon, Y. J. Park, W. J. Ha, and J. K. Kim, Electron. Mater. Lett. 6, 51 (2010).
  5. R. R. Tummala, Fundamentals of Microsystems Packaging, New York: McGraw-Hill (2001).
  6. Y. Liu, Microelectronics Reliability 50, 514 (2010). https://doi.org/10.1016/j.microrel.2009.09.002
  7. H. Shimaamoto, Technical Trend of 3D Chip Stacked Previous Term MCP/SIP Next Term In, Proc. 57th ECTC workshop (2007).
  8. M. Y. Kim, T. S. Oh, and T. S. Oh, Kor. J. Met. Mater. 48, 557 (2010).
  9. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, J. Kor. Inst. Met. & Mater. 46, 310 (2008).
  10. V. S. Rao, V. Kripseph, S. W. Yoon, D. Witarsa, and A. A. O. Tay, Proc. 6th EPTC-IEEE, p. 444-449 (2004).
  11. M. Ding, G Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, J. Appl. Phys. 99, 094906 (2006). https://doi.org/10.1063/1.2193037
  12. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, Jap. J. Appl. Phys. 43, 2264 (2004). https://doi.org/10.1143/JJAP.43.2264
  13. B. H. Lee, J. Park, S. J. Jeon, K. W. Kwon, and H. J. Lee, J. Electrochem. Soc. 157, H420 (2010). https://doi.org/10.1149/1.3301931
  14. Y. S. Lai, Y. T. Chiu, and J. Chen, J. Elecron. Mater. 37, 1624 (2008). https://doi.org/10.1007/s11664-008-0515-3
  15. B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, Met. Mater. Int. 15, 815 (2009). https://doi.org/10.1007/s12540-009-0815-4
  16. G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, J. Electron. Mater. 38, 2228 (2009). https://doi.org/10.1007/s11664-009-0922-0
  17. B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, J. Electron. Mater. 39, 2281 (2010). https://doi.org/10.1007/s11664-010-1324-z
  18. M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, J. Electron. Mater. 39, 2368 (2010). https://doi.org/10.1007/s11664-010-1345-7
  19. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, J. Korean Phys. Soc. 54, 1784 (2009). https://doi.org/10.3938/jkps.54.1784
  20. K. N. Tu, Acta Metall. 21, 347 (1973). https://doi.org/10.1016/0001-6160(73)90190-9
  21. K. N. Tu, Solder Joint Technology, Materials, Properties, and Reliability, New York: Springer, p.59-71 (2007).
  22. D. A. Porter and K. E. Easterling, Phase Transformation in Materials, 2nd edition, London: Chapman & Hall (1992).
  23. S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, J. Electron. Mater. 28, 1209 (1999). https://doi.org/10.1007/s11664-999-0159-y
  24. K. Yamanaka, Y. Tsukada, and K. Suganuma, Scripta Mater. 55, 867 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.053
  25. C. Y. Liu, L. Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phy. 100, 083702 (2006). https://doi.org/10.1063/1.2357860
  26. T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005).
  27. L. Xu, J. K. Han, J. J. Liang, K. N. Tu, and Y. S. Lai, Appl. Phys. Lett. 92, 262104 (2008). https://doi.org/10.1063/1.2953692
  28. C. Yu, Y. Yang, H. Lu, and J. M. Chen, J. Electron. Mater. 39, 1309 (2010). https://doi.org/10.1007/s11664-010-1201-9
  29. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science, New York: Macmillan (1992).