• 제목/요약/키워드: Amkor

검색결과 43건 처리시간 0.02초

Double Side SMT and Molding Process Development for mPossum Package

  • Kim, ByongJin;Cho, EunNaRa;Kim, ChoongHoe;Lee, YoungWoo;Lee, JaeUng;Ryu, DongSu;Jung, GyuIck;Kang, DaeByoung;Khim, JinYoung;Yoon, JuHoon;Kim, Sun-Joong
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.43-48
    • /
    • 2016
  • 3-Dimensional System in Package (3-D SiP) structure (Amkor calls it mPossum-molded Possum) using double side Surface Mount Technology (SMT) and double side molding was evaluated in order to achieve small/thin form factor as well as good functionality by integration and double side layout. As the new platform on laminate substrate basis, molding process was challenge in mold flow balance at top and bottom side and package warpage control over the overall assembly process. There were two types of different molding process evaluated with 1) 1-step molding which was done at both side at the same time and 2) 2-step molding which was done at the conventional molding process twice. Mold simulation helped to narrow down the material selections and parameters available before actual sample build. There were many challenges for this first trial in design/ parameter and material types but optimized them to enable this structure.

Leadframe SiP with Conformal Shield

  • Kim, ByongJin;Sim, KiDong;Hong, SeoungJoon;Moon, DaeHo;Son, YongHo;Kang, DaeByoung;Khim, JinYoung;Yoon, JuHoon
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.31-34
    • /
    • 2016
  • System In Package (SiP) is getting popular and momentum for the recent wearable, IoT and connectivity application apart from mobile phone. This is driven by market demands of cost competitive, lighter and smaller/thinner and higher performance. As one of many semiconducting assembly products, Leadframe product has been widely used for low cost solution, light/ small and thin form factor. But It has not been applied for SiP although Leadframe product has many advantages in cost, size and reliability performance. SiP is mostly based on laminate substrate and technically difficult on Leadframe substrate because of a limitation in SMT performance. In this paper, Leadframe based SiP product has been evaluated about key technical challenges in SMT performance and electrical shield technology. Mostly Leadframe is considered not available to apply EMI shield because of tie-bar around package edge. In order to overcome two major challenges, connection bars were deployed properly for SMT pad to pad and additional back-side etching was implemented after molding process to achieve electrical isolation from outer shield coating. This product was confirmed assembly workability as well as reliability.

RtMLF(Routable Molded Lead Frame) 패키지 소개 및 응용 (Introduction of Routable Molded Lead Frame and its Application)

  • 김병진;방원배;김기정;정지영;윤주훈
    • 마이크로전자및패키징학회지
    • /
    • 제22권2호
    • /
    • pp.41-45
    • /
    • 2015
  • 리드프레임의 우수한 열적/전기적 특성을 유지하면서 많은 I/O수를 수용할 수 있는 구조, 그리고 라미네이트의 디자인 팬인(Fan-in) 및 팬아웃(Fan-out) 설계 유연성을 유지하면서 가격경쟁력을 향상 시킬 수 있는 몰딩기판(Molded substrate)을 기반으로 한 RtMLF(Routable Molded Lead Frame) 패키지를 개발하였다. 개발된 패키지의 구조적 특징을 이용하여, 열적 전기적 성능의 우수성을 시뮬레이션을 통해서 확인하였으며, 제조 및 신뢰성 분석을 수행하여 생산 적용 가능성을 확인하였다.

Thermal Performance Analysis for Cu Block and Dense Via-cluster Design of Organic Substrate in Package-On-Package

  • Lim, HoJeong;Jung, GyuIk;Kim, JiHyun;Fuentes, Ruben
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.91-95
    • /
    • 2017
  • Package-On-Package (PoP) technology is developing toward smaller form factors with high-speed data transfer capabilities to cope with high DDR4x memory capacity. The common application processor (AP) used for PoP devices in smartphones has the bottom package as logic and the top package as memory, which requires both thermally and electrically enhanced functions. Therefore, it is imperative that PoP designs consider both thermal and power distribution network (PDN) issues. Stacked packages have poorer thermal dissipation than single packages. Since the bottom package usually has higher power consumption than the top package, the bottom package impacts the thermal budget of the top package (memory). This paper investigates the thermal and electrical characteristics of PoP designs, particularly the bottom package. Findings include that via and dense via-cluster volume have an important role to lower thermal resistance to the motherboard, which can be an effective way to manage chip hot spots and reduce the thermal impact on the memory package. A Cu block and dense via-cluster layout with an optimal location are proposed to drain the heat from the chip hot spots to motherboard which will enhance thermal and electrical performance at the design stage. The analytical thermal results can be used for design guidelines in 3D packaging.

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF

개선된 회전형 레올로지 측정법을 이용한 박형 반도체 패키지 내에서의 3차원 몰드 유동현상 연구 (Full Three Dimensional Rheokinetic Modeling of Mold Flow in Thin Package using Modified Parallel Plate Rheometry)

  • 이민우;유민;유희열
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.17-20
    • /
    • 2003
  • The EMC's rheological effects on molding process are evaluated in this study. When considering mold processing for IC packages, the major concerning items in current studies are incomplete fill, severe wire sweeping and paddle shifts etc. To simulate EMC's fast curing rheokinetics with 3D mold flow behavior, one should select appropriate rheometry which characterize each EMC's rheological motion and finding empirical parameters for numerical analysis current studies present the new rheometry with parallel plate rheometry for reactive rheokinetic experiments, the experiment and numerical analysis is done with the commercial higher filler loaded EMC for the case of Thin Quad Plant Packages (TQFP) with package thickness below 1.0 mm. The experimental results and simulation results based on new rheometry matches well in point of the prediction of wire sweep, filling behavior of melt front advancement and void trapping position.

  • PDF