• 제목/요약/키워드: All Solid-State Batteries

검색결과 50건 처리시간 0.023초

전고상 전지를 위한 스파크 플라스마 소결 기술과 응용 (Spark Plasma Sintering Technique and Application for All-Solid-State Batteries)

  • 이석희
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.170-181
    • /
    • 2019
  • All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.

계면 제어를 기반으로 한 고성능 전고체 전지 연구 (Review of interface engineering for high-performance all-solid-state batteries)

  • 황인수;이현정
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

Challenges and Improvements of All-Solid-State Batteries

  • Jihyun Jang
    • 대한화학회지
    • /
    • 제67권3호
    • /
    • pp.165-174
    • /
    • 2023
  • The development of all-solid-state batteries (ASSBs) has been gaining attention in recent years due to their potential to offer higher energy densities, improved safety, and longer cycle life compared to conventional lithium-ion batteries. However, several challenges must be addressed to achieve the practical application of ASSBs, such as the development of high-performance solid-state electrolytes, stable electrode-electrolyte interfaces, and cost-effective manufacturing processes. In this review paper, we present an overview of the current state of ASSB research, including recent progress in solid-state electrolyte and cathode/anode materials, and cell architecture. We also summarize the recent advancements and highlight the remaining challenges in ASSB research, with an outlook on the future of this promising technology.

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu;Choi, Sunho;Do, Jiyae;Lim, Seungwoo;Shin, Dongwook
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.413-418
    • /
    • 2018
  • All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

Efficient cell design and fabrication of concentration-gradient composite electrodes for high-power and high-energy-density all-solid-state batteries

  • Kim, Ju Young;Kim, Jumi;Kang, Seok Hun;Shin, Dong Ok;Lee, Myeong Ju;Oh, Jimin;Lee, Young-Gi;Kim, Kwang Man
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.129-137
    • /
    • 2020
  • All-solid-state batteries are promising energy storage devices in which high-energy-density and superior safety can be obtained by efficient cell design and the use of nonflammable solid electrolytes, respectively. This paper presents a systematic study of experimental factors that affect the electrochemical performance of all-solid-state batteries. The morphological changes in composite electrodes fabricated using different mixing speeds are carefully observed, and the corresponding electrochemical performances are evaluated in symmetric cell and half-cell configurations. We also investigate the effect of the composite electrode thickness at different charge/discharge rates for the realization of all-solid-state batteries with high-energy-density. The results of this investigation confirm a consistent relationship between the cell capacity and the ionic resistance within the composite electrodes. Finally, a concentration-gradient composite electrode design is presented for enhanced power density in thick composite electrodes; it provides a promising route to improving the cell performance simply by composite electrode design.

소셜미디어 분석을 통한 전고체 배터리 감성분석과 이슈 탐색 (Sentiment Analysis and Issue Mining on All-Solid-State Battery Using Social Media Data)

  • 이지연;이병희
    • 한국콘텐츠학회논문지
    • /
    • 제22권10호
    • /
    • pp.11-21
    • /
    • 2022
  • 전고체 배터리는 차세대 배터리의 유력 후보 중 하나로 특히 미래 전기차 산업을 이끌 핵심 부품으로 주목받고 있다. 본 연구에서는 글로벌 소셜미디어인 레딧(Reddit)의 전고체 배터리 관련 댓글 10,280건을 분석하여 전고체 배터리와 관련된 정책 이슈 및 대중의 관심사를 파악한다. 수집된 글로벌 데이터에 빈도분석, 연관규칙분석, 토픽모델링 등 텍스트마이닝 기법과 감성분석을 적용하여 세계적 동향을 읽고, 이를 우리 정부의 전고체 배터리 발전전략과 비교 및 관련 국가R&D의 정책적 방향을 제시하고자 한다. 분석 결과, 2016년부터 2021년까지의 전고체 배터리 이슈에 대한 전반적인 감성은 긍정이 50.5%, 부정이 39.5%로 긍정인 것으로 나타났다. 또한 세부 감성을 분석한 결과, 대중들은 전고체 배터리에 대해 신뢰와 기대를 가지고 있음과 동시에 해결되지 않은 기술적 문제들에 대한 두려움과 우려의 감정이 공존함을 알 수 있었다. 본 연구에서는 전고체 배터리와 관련된 핵심 이슈 도출을 위한 텍스트마이닝 분석 방법을 적용하였고, 정부 정책 분석을 바탕으로 한 하향식 접근방법과 대중의 인식을 분석하는 상향식 접근방법을 수용하여, 보다 포괄적인 동향 분석 방법을 제시하였다.

리튬금속과 고체전해질의 계면 반응 (Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries)

  • 김재헌
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성 (Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF