Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00864

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte  

Lee, Jongkwan (Korea Institute of Industrial Technology (KITECH))
Heo, Kookjin (Korea Institute of Industrial Technology (KITECH))
Song, Young-Woong (Korea Institute of Industrial Technology (KITECH))
Hwang, Dahee (Korea Institute of Industrial Technology (KITECH))
Kim, Min-Young (Korea Institute of Industrial Technology (KITECH))
Jeong, Hyejeong (Korea Institute of Industrial Technology (KITECH))
Shin, Dong-Chan (Department of Advanced Materials Engineering, Chosun University)
Lim, Jinsub (Korea Institute of Industrial Technology (KITECH))
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 199-207 More about this Journal
Abstract
Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.
Keywords
Lithium-Sulfur Batteries; Solid-State Electrolyte; $Li_7La_3Zr_2O_{12}$ (LLZO); Poly(Ethylene Oxide) (PEO);
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Chen, Y. Li, S. P. Li, L. Z. Fan, C. W. Nan, and J. B. Goodenough, Nano Energy, 2018, 46, 176-184.   DOI
2 Z. W. She, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu and Y. Cui, Nat. Commun., 2013, 4(1), 1-6.
3 Q. Wu, X. Zhou, J. Xu, F. Cao and C. Li, ACS Nano, 2019, 13(8), 9520-9532.   DOI
4 L. Borchardt, M. Oschatz and S. Kaskel, Chem. Eur, J., 2016, 22(22), 7324-7351.   DOI
5 M. Rana, S. A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle and R. Knibbe, Energy Storage Mater., 2019, 18, 289-310.   DOI
6 X. Ye, J. Ma, Y. S. Hu, H. Wei and F. Ye, J. Mater. Chem. A, 2016, 4(3), 775-780.   DOI
7 G. G. Eshetu, X. Judez, C. Li, M. Martinez-Ibanez, I. Gracia, O. Bondarchuk, J. Carrasco, L. M. Rodriguez- Martinez, H. Zhang and M. Armand, J. Am. Chem. Soc., 2018, 140(31), 9921-9933.   DOI
8 G. Zheng, Y. Yang, J. J. Cha, S. S. Hong and Y. Cui, Nano Lett., 2011, 11(10), 4462-4467.   DOI
9 D. Larcher and J. M. Tarascon, Nat. Chem., 2015, 7(1), 19-29.   DOI
10 J. B. Goodenough, Energy Storage Materials, 2015, 1, 158-161.   DOI
11 D. Lv, J. Zheng, Q. Li, X. Xie, S. Ferrara, Z. Nie, L.B. Mehdi, N. D. Browning, J. G. Zhang, G. L. Graff, J. Liu and F. Xiao, Adv. Energy Mater., 2015, 5(16), 1402290.   DOI
12 W. Ahn, K. B. Kim, K. N. Jung, K. H. Shin and C. S. Jin, J. Power Sources, 2011, 202, 394-399.   DOI
13 Y. X. Yin, S. Xin, Y.G. Guo and L. J. Wan, Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13186-13200.   DOI
14 T. Hara, A. Konarov, A. Mentbayeva, I. Kurmanbayeva and Z. Bakenov, Front. Energy Res., 2015, 3, 22.
15 X. Ji and L. F. Nazar, J. Mater. Chem., 2010, 20(44), 9821-9826.   DOI
16 L. Chen and L. L. Shaw, J. Power Sources, 2014, 267, 770-783.   DOI
17 A. Manthiram, Y. Fu and Y. S. Su, Acc. Chem. Res., 2013, 46, 1125-1134.   DOI
18 A. Manthiram, Y. Fu, S. H. Chung, C. Zu and Y. S. Su, Chem. Rev., 2014, 114(23), 11751-11787.   DOI
19 N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao and Y. Shi, Chem. Commun., 2012, 48(34), 4106-4108.   DOI
20 Y. Zhang, Y. Zhao, Z. Bakenov, M. Tuiyebayeva and A. Konarov, P. Chen, Electrochim. Acta, 2014, 143, 49-55.   DOI
21 D. Wang, A. Fu, H. Li, Y. Wang, P. Guo, J. Liu and X.S. Zhao, J. Power Sources, 2015, 285, 469-477.   DOI
22 M. Yan, W. P. Wang, Y. X. Yin, L. J. Wan and Y. G. Guo, J. Energy Chem., 2019, 1(1), 100002.
23 R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed., 2007, 46(41), 7778-7781.   DOI
24 Y. Z. Sun, J. Q. Huang, C. Z. Zhao and Q. Zhang, Sci. China Chem., 2017, 60(12), 1508-1526.   DOI
25 H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj and M. Armand, Electrochim. Acta, 2016, 220, 587-594.   DOI
26 L. Bai, W. Xue, Y. Li, X. Liu, Y. Li and J. Sun, Ceram. Int., 2018, 44(7), 7319-7328.   DOI
27 X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.W. Lee and Y. Cui, Nano Lett., 2017, 17(5), 2967-2972.   DOI
28 G. Radhika, K. Krishnaveni, C. Kalaiselvi, R. Subadevi and M. Sivakumar, Polym. Bull., 2020, 77(8), 4167-4179.   DOI
29 S. Ohta, T. Kobayashi, J. Seki and T. Asaoka, J. Power Sources, 2012, 202, 332-335.   DOI