Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Sunho (Division of Materials Science and Engineering, Hanyang University) ;
  • Do, Jiyae (Division of Materials Science and Engineering, Hanyang University) ;
  • Lim, Seungwoo (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Dongwook (Division of Materials Science and Engineering, Hanyang University)
  • Published : 2018.10.01

Abstract

All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

Keywords

Acknowledgement

Supported by : Institute of Civil Military Technology Cooperation

References

  1. Y.S. Jung, D.Y. Oh, Y.J. Nam and K.H. Park, Isr. J. Chem. 55[5] (2015) 472-485. https://doi.org/10.1002/ijch.201400112
  2. C. Sun, J. Liu, Y. Gong, D.P. Wilkinson and J. Zhang, Nano Energy 33 (2017) 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  3. A. Sakuda, A. Hayashi and M. Tatsumisago, Scientific reports 3 (2013) 2261. https://doi.org/10.1038/srep02261
  4. S. Chen, D. Xie, G. Liu, J.P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu and X. Yao, Energy Storage Materials 14 (2018) 58-74. https://doi.org/10.1016/j.ensm.2018.02.020
  5. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo and Y. Huang, Adv. Mater. 30[17] (2018) 1705702. https://doi.org/10.1002/adma.201705702
  6. A. Sakuda, A. Hayashi and M. Tatsumisago, Current Opinion in Electrochemistry 6[1] (2017) 108-114. https://doi.org/10.1016/j.coelec.2017.10.008
  7. J.K. Hong, J.H. Lee and S.M. Oh, J. Power Sources 111[1] (2002) 90-96. https://doi.org/10.1016/S0378-7753(02)00264-1
  8. I. Cho, J. Choi, K. Kim, M.-H. Ryou and Y.M. Lee, RSC Advances 5[115] (2015) 95073-95078. https://doi.org/10.1039/C5RA19056H
  9. J. Ma, B. Chen, L. Wang and G. Cui, J. Power Sources 392 (2018) 94-115. https://doi.org/10.1016/j.jpowsour.2018.04.055
  10. R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik and J. Jamnik, J. Power Sources 119 (2003) 770-773.
  11. X. Bian, Q. Fu, C. Qiu, X. Bie, F. Du, Y. Wang, Y. Zhang, H. Qiu, G. Chen and Y. Wei, Mater. Chem. Phys. 156 (2015) 69-75. https://doi.org/10.1016/j.matchemphys.2015.02.024
  12. S. Hong, J. Kim, M. Kim, X. Meng, G. Lee and D. Shin, Ceramics International 41[3] (2015) 5066-5071. https://doi.org/10.1016/j.ceramint.2014.12.076
  13. X. Li, X. Zhao, M.-S. Wang, K.-J. Zhang, Y. Huang, M.-Z. Qu, Z.-L. Yu, D.-s. Geng, W.-g. Zhao and J.-m. Zheng, RSC Advances 7[39] (2017) 24359-24367. https://doi.org/10.1039/C7RA03438E
  14. X. Bian, Q. Fu, C. Qiu, X. Bie, F. Du, Y. Wang, Y. Zhang, H. Qiu, G. Chen and Y. Wei, Materials Chemistry and Physics 156 (2015) 69-75. https://doi.org/10.1016/j.matchemphys.2015.02.024
  15. K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun, D.S. Jung, W. Cho and J.W. Choi, J. Electrochem. Soc. 164[9] (2017) A2075-A2081. https://doi.org/10.1149/2.1341709jes
  16. A. Sakuda, K. Kuratani, M. Yamamoto, M. Takahashi, T. Takeuchi and H. Kobayashi, J. Electrochem. Soc. 164[12] (2017) A2474-A2478. https://doi.org/10.1149/2.0951712jes
  17. J. Zhang, H. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y. Gan, X. Tao and W. Zhang, J. Power Sources 391 (2018) 73-79. https://doi.org/10.1016/j.jpowsour.2018.04.069
  18. Y.J. Nam, D.Y. Oh, S.H. Jung and Y.S. Jung, J. Power Sources 375 (2018) 93-101. https://doi.org/10.1016/j.jpowsour.2017.11.031
  19. S. Boulineau, M. Courty, J.-M. Tarascon and V. Viallet, Solid State Ionics 221 (2012) 1-5. https://doi.org/10.1016/j.ssi.2012.06.008
  20. A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga and M. Tatsumisago, J. Electrochem. Soc. 156[1] (2009) A27-A32. https://doi.org/10.1149/1.3005972
  21. S. Choi, J. Kim, M. Eom, X. Meng and D. Shin, J. Power Sources 299 (2015) 70-75. https://doi.org/10.1016/j.jpowsour.2015.08.081
  22. S. Noh, W.T. Nichols, C. Park and D. Shin, Ceramics International 43[17] (2017) 15952-15958. https://doi.org/10.1016/j.ceramint.2017.08.176
  23. S. Choi, S. Lee, J. Park, W.T. Nichols and D. Shin, Appl. Surf. Sci. 444 (2018) 10-14. https://doi.org/10.1016/j.apsusc.2018.02.270