DOI QR코드

DOI QR Code

전고상 전지를 위한 스파크 플라스마 소결 기술과 응용

Spark Plasma Sintering Technique and Application for All-Solid-State Batteries

  • Lee, Seokhee (Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2019.05.24
  • 심사 : 2019.06.25
  • 발행 : 2019.06.30

초록

All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.

키워드

참고문헌

  1. J.M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature 414 359-367 (2001). https://doi.org/10.1038/35104644
  2. J.B. Goodenough and Y. Kim, "Challenges for rechargeable Li batteries," Chem. Mater. 22 583-603 (2010).
  3. X.B. Cheng, R. Zhang, C.Z. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: a review," Chem. Rev. 117 10403-20473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
  4. A. Manthiram, X. Yu, and S. Wang, "Lithium battery chemistries enabled by solid-state electrolytes," Nat. Rev. Mater. 2 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
  5. Y.S. Hu, "Batteries: getting solid," Nat. Energy 1 16042 (2016). https://doi.org/10.1038/nenergy.2016.42
  6. J. Schnell, T. Gunther, T. Knoche, C. Vieider, L. Kohler, A. Just, et al., All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production, J. Power Sources 382 160-175 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.062
  7. J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, and S.F. Lux, "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction", Chem. Rev. 116 140-162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
  8. Y. Meesala, A. Jena, H. Chang, and R.S. Liu, "Recent advancements in Li-ion conductors for all-solidstate Li-ion batteries," ACS Energy Lett. 2 2734-2751 (2017). https://doi.org/10.1021/acsenergylett.7b00849
  9. A. Mauger, M. Armand, C.M. Julien, and K. Zaghib, "Challenges and issues facing lithium metal for solidstate rechargeable batteries," J. Power Sources 353 333-342 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.018
  10. B. Wu, S. Wang, W. Evans, Z.D. Deng, J. Yang, and J. Xiao, "Interfacial behaviors between lithium ion conductors and electrode materials in various battery systems," J. Mater. Chem. 4 15266-15280 (2016). https://doi.org/10.1039/C6TA05439K
  11. R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, "The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons", Mater. Horiz. 3 487-516 (2016). https://doi.org/10.1039/C6MH00218H
  12. Olivier Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, and J. Rathel, "Fieldassisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments," Adv. Engineering Mater. 16 830-849 (2014). https://doi.org/10.1002/adem.201300409
  13. L. Wang, J. Zhang, and W. Jiang, "Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering," Int. J. Refract. Metals Hard Mater. 39 103-112 (2013). https://doi.org/10.1016/j.ijrmhm.2013.01.017
  14. Z.A. Munir, D.V. Quach, and M. Ohyanagi, "Electric current activation of sintering: a review of the pulsed electric current sintering process," J. Am. Ceram. Soc. 94 1-19 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
  15. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, "The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method," J. Mater. Sci. 41 763-777 (2006). https://doi.org/10.1007/s10853-006-6555-2
  16. E.A. Olevsky, S. Kandukuri, and L. Froyen, "Consolidation enhancement in spark plasma sintering: impact of high heating rates," J. Appl. Phys. 102 114913-114913-12 (2007). https://doi.org/10.1063/1.2822189
  17. W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, and G. Ceder, "Interface stability in solid-state batteries," Chem. Mater. 28 266-273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
  18. V. Thangadurai, S. Narayanan, and D.Pinzaru, "Garnet-type solid-state fast Li ion conductors for Li batteries: critical review," Chem. Soc. Rev. 43 4714-4727 (2014). https://doi.org/10.1039/c4cs00020j
  19. Y. Zhang, F. Chen, T. Rong, Q. Shen, L. Zhang, "Field assisted sintering of dense Al substituted cubic phase $Li_7La_3Zr_2O_{12}$ solid electrolytes," J. Power Sources 268 960-964 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.148
  20. M. Botros, R. Djenadic, O. Clemens, M. Moller, and H. Hahn, "Field assisted sintering of fine-grained $Li_{7-3}xLa_3Zr_2Al_xO_{12}$ solid electrolyte and the influence of the microstructure on the electrochemical performance," J. Power Sources 309 108-115 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.086
  21. M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen and Y. Lin, "Effect of sintering temperature on structure and ionic conductivity of $Li_{7-x}La_3Zr_2O_{12-0.5x}$, (x = 0.5-0.7) ceramics," Solid State Ionics 204-205(3) 41-45 (2011). https://doi.org/10.1016/j.ssi.2011.10.003
  22. S.W. Baek, J.M. Lee, T.Y. Kim, M.S. Song, and Y. Park, "Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries," J. Power Sources 249 197-206 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.089
  23. M.M. Ahmad, "Enhanced lithium ionic conductivity and study of the relaxation and giant dielectric properties of spark plasma sintered $Li_5La_3Nb_2O_{12},$ nanomaterials," Ceram. Int. 41 6398-6408 (2015). https://doi.org/10.1016/j.ceramint.2015.01.077
  24. M.M. Ahmad, "Lithium ionic conduction and relaxation dynamics of spark plasma sintered $Li_5La_3Ta_2O_{12},$ garnet nanoceramics," Nanoscale Res. Lett. 10 58 (2015). https://doi.org/10.1186/s11671-015-0777-7
  25. Y.X. Gao, X.P. Wang, W.G. Wang, Z. Zhuang, D.M. Zhang, and Q.F. Fang, "Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor $Li_5La_3Bi_2O_{12},$," Solid State Ionics 181 1415-1419 (2010). https://doi.org/10.1016/j.ssi.2010.08.012
  26. C.M. Chang, Y.I. Lee, S.H. Hong, and H.M. Park, "Spark plasma sintering of $LiTi_2(PO_4)_3$-based solid electrolytes," J. Am. Ceram. Soc. 88 1803-1807 (2005). https://doi.org/10.1111/j.1551-2916.2005.00246.x
  27. Z. Wen, X. Xu, and J. Li, "Preparation, microstructure and electrical properties of $Li_{1.4}Al){0.4}Ti_{1.6}(PO_4)_3$, nanoceramics," J. Electroceramics 22 (1-3) 342-345 (2009). https://doi.org/10.1007/s10832-008-9420-7
  28. A. Kubanska, L. Castro, L. Tortet, O. Schaf, M. Dolle, and R. Bouchet, "Elaboration of controlled size $Li_{1.5}Al){0.5}Ge_{1.5}(PO_4)_3$ crystallites from glass-ceramics," Solid State Ionics 266 44-50 (2014). https://doi.org/10.1016/j.ssi.2014.07.013
  29. A. Mei, Q.H. Jiang, Y.H. Lin, and C.W. Nan, "Lithium lanthanum titanium oxide solid state electrolyte by spark plasma sintering," J. Alloys Compd. 486 871-875 (2009). https://doi.org/10.1016/j.jallcom.2009.07.091
  30. Y. Kobayashi, H. Miyashiro, T. Takeuchi, H. Shigemura, N. Balakrishnan, and M. Tabuchi, "Allsolid-state lithium secondary battery with ceramic/polymer composite electrolyte," Solid State Ionics 152-153 137-142 (2007). https://doi.org/10.1016/S0167-2738(02)00366-1
  31. D. Gaelle, V. Virginie, A. Abdelmaula, B. Renaud, T. Laurence, and S. Vincent, "Batteries: the stone age revisited: building a monolithic inorganic lithium-ion battery," Adv. Funct. Mater. 22 2140-2147 (2012). https://doi.org/10.1002/adfm.201102479
  32. A. Aboulaich, R. Bouchet, G. Delaizir, V. Seznec, L. Tortet, and M. Morcrette, A new approach to develop safe all-inorganic monolithic Li-ion batteries, Adv. Energy Mater. 1 179-183 (2011). https://doi.org/10.1002/aenm.201000050
  33. S.P. Woo, S.H. Lee, and Y.S. Yoon, "Characterization of $LiCoO_2$/multiwall carbon nanotubes with garnettype electrolyte fabricated by spark plasma sintering for bulk type all-solid-state batteries," Compos. B Eng. 124 242-249 (2017). https://doi.org/10.1016/j.compositesb.2017.05.025
  34. T. Okumura, T. Takeuchi, and H. Kobayashi, "Enhancement of lithium-ion conductivity for $Li_{2.2}C_{0.8}B_{0.2}O_3$ by spark plasma sintering," J. Ceram. Soc. Japan 125 276-280 (2017). https://doi.org/10.2109/jcersj2.16276
  35. F. Lalere, J.B. Leriche, M. Courty, S. Boulineau, V. Viallet, and C. Masquelier, "An all-solid state NASICON sodium battery operating at $200^{\circ}C$," J. Power Sources 247 975-980 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.051

피인용 문헌

  1. A study on the use of various additives to polymer-based solid electrolytes for all-solid-state batteries vol.24, pp.2, 2019, https://doi.org/10.31613/ceramist.2021.24.2.04