DOI QR코드

DOI QR Code

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries

리튬금속과 고체전해질의 계면 반응

  • Jae-Hun Kim (School of Materials Science and Engineering, Kookmin University)
  • 김재헌 (국민대학교 신소재공학부)
  • Received : 2023.08.01
  • Accepted : 2023.08.07
  • Published : 2023.08.30

Abstract

Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Keywords

Acknowledgement

이 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF- 2021S1A5A2A03065436).

References

  1. J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22, 587 (2010). Doi: https://doi.org/10.1021/cm901452z
  2. J. B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, 135, 1167 (2013). Doi: https://doi.org/10.1021/ja3091438
  3. M. S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chemical reviews, 114, 11414 (2014). Doi: https://doi.org/10.1021/cr5003003
  4. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, 10, 725 (1998). Doi: https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  5. K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical reviews, 104, 4303 (2004). Doi: https://doi.org/10.1021/cr030203g
  6. C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
  7. M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, A Review of Degradation Mechanisms and Recent Achievements for Ni-Rich Cathode-Based Li-Ion Batteries, Advanced Energy Materials, 11, 2103005 (2021). Doi: https://doi.org/10.1002/aenm.202103005
  8. X. Ji, Q. Xia, Y. Xu, H. Feng, P. Wang, Q. Tan, A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries, Journal of Power Sources, 487, 229362 (2021). Doi: https://doi.org/10.1016/j.jpowsour.2020.229362
  9. S. J. Hong, S. Nam, Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for LiIon Batteries, Corrosion Science and Technology, 21, 445 (2022). Doi: https://doi.org/10.14773/cst.2022.21.6.445
  10. H. Yuan, X. Ding, T. Liu, J. Nai, Y. Wang, Y. Liu, C. Liu, X. Tao, A review of concepts and contributions in lithium metal anode development, Materials Today, 53, 173 (2022). Doi: https://doi.org/10.1016/j.mattod.2022.01.015
  11. Y. Kim, J.-H. Kim, Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries, Corrosion Science and Technology, 21, 250 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.250
  12. L. Sun, Y. Liu, R. Shao, J. Wu, R. Jiang, Z. Jin, Recent progress and future perspective on practical silicon anode-based lithium ion batteries, Energy Storage Materials, 46, 482 (2022). Doi: https://doi.org/10.1016/j.ensm.2022.01.042
  13. K. Kim, S. Jeon, H.-S. Kim, H. Seo, H.-s. Kim, M. M. Doeff, S.-G. Woo, J.-H. Kim, Superior metal storage behavior of Zn-containing porous carbon nanostructures for Na and Li metal batteries, Journal of Materials Chemistry A, 11, 7276 (2023). Doi: https://doi.org/10.1039/D3TA01103H
  14. H. Choi, S. Kim, H. Song, S. Suh, H.-J. Kim, K. Eom, Fabrication of a Porous Copper Current Collector Using a Facile Chemical Etching to Alleviate Degradation of a Silicon-Dominant Li-ion Battery Anode, Corrosion Science and Technology, 20, 249 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.249
  15. P. V. Chombo, Y. Laoonual, A review of safety strategies of a Li-ion battery, Journal of Power Sources, 478, 228649 (2020). Doi: https://doi.org/10.1016/j.jpowsour.2020.228649
  16. B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: A review, Renewable and Sustainable Energy Reviews, 150, 111437 (2021). Doi: https://doi.org/10.1016/j.rser.2021.111437
  17. M. Shahjalal, T. Shams, M. E. Islam, W. Alam, M. Modak, S. B. Hossain, V. Ramadesigan, M. R. Ahmed, H. Ahmed, A. Iqbal, A review of thermal management for Li-ion batteries: Prospects, challenges, and issues, Journal of Energy Storage, 39, 102518 (2021). Doi: https://doi.org/10.1016/j.est.2021.102518
  18. K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries, Journal of The Electrochemical Society, 164, A1731 (2017). Doi: https://doi.org/10.1149/2.1571707jes
  19. J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi, B. S. Dunn, Sulfide Solid Electrolytes for Lithium Battery Applications, Advanced Energy Materials, 8, 1800933 (2018). Doi: https://doi.org/10.1002/aenm.201800933
  20. S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application, Energy Storage Materials, 14, 58 (2018). Doi: https://doi.org/10.1016/j.ensm.2018.02.020
  21. A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes, Chemical reviews, 120, 6878 (2020). Doi: https://doi.org/10.1021/acs.chemrev.0c00101
  22. C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics, Nano Energy, 83, 105858 (2021). Doi: https://doi.org/10.1016/j.nanoen.2021.105858
  23. K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces, Advanced Energy Materials, 11, 2002689 (2021). Doi: https://doi.org/10.1002/aenm.202002689
  24. Y. Zhu, X. He, Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries, Journal of Materials Chemistry A, 4, 3253 (2016). Doi: https://doi.org/10.1039/C5TA08574H
  25. Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes, Nature Energy, 5, 299 (2020). Doi: https://doi.org/10.1038/s41560-020-0575-z
  26. D. H. S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494 (2021). Doi: https://doi.org/10.1126/science.abg7217
  27. Y.-J. Jang, H. Seo, Y.-S. Lee, S. Kang, W. Cho, Y. W. Cho, J.-H. Kim, Lithium Superionic Conduction in BH4-Substituted Thiophosphate Solid Electrolytes, Advanced Science, 10, 2204942 (2023). Doi: https://doi.org/10.1002/advs.202204942
  28. H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Metallic anodes for next generation secondary batteries, Chemical Society Reviews, 42, 9011 (2013). Doi: https://doi.org/10.1039/C3CS60177C
  29. F. Orsini, A. Du Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, P. Notten, In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries, Journal of Power Sources, 76, 19 (1998). Doi: https://doi.org/10.1016/S0378-7753(98)00128-1
  30. X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang, F. Wang, H. Duan, M. Tang, H. Jiang, Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates, Nature Energy, 3, 227 (2018). Doi: https://doi.org/10.1038/s41560-018-0104-5
  31. Y. Zhu, X. He, Y. Mo, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations, ACS Applied Materials & Interfaces, 7, 23685 (2015). Doi: https://doi.org/10.1021/acsami.5b07517
  32. X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nature Materials, 16, 572 (2017). Doi: https://doi.org/10.1038/nmat4821
  33. T. Deng, X. Ji, Y. Zhao, L. Cao, S. Li, S. Hwang, C. Luo, P. Wang, H. Jia, X. Fan, X. Lu, D. Su, X. Sun, C. Wang, J.-G. Zhang, Tuning the Anode-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries, Advanced Materials, 32, 2000030 (2020). Doi: https://doi.org/10.1002/adma.202000030
  34. X. Hao, Q. Zhao, S. Su, S. Zhang, J. Ma, L. Shen, Q. Yu, L. Zhao, Y. Liu, F. Kang, Y.-B. He, Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid-State Lithium Metal Batteries, Advanced Energy Materials, 9, 1901604 (2019). Doi: https://doi.org/10.1002/aenm.201901604
  35. N. C. Rosero-Navarro, R. Kajiura, R. Jalem, Y. Tateyama, A. Miura, K. Tadanaga, Significant Reduction in the Interfacial Resistance of Garnet-Type Solid Electrolyte and Lithium Metal by a Thick Amorphous Lithium Silicate Layer, ACS Applied Energy Materials, 3, 5533 (2020). Doi: https://doi.org/10.1021/acsaem.0c00511
  36. W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E. D. Wachsman, L. Hu, Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte, Journal of the American Chemical Society, 138, 12258 (2016). Doi: https://doi.org/10.1021/jacs.6b06777
  37. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3, e1601659 (2017). Doi: https://doi.org/10.1126/sciadv.1601659
  38. W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.-F. Lin, Y. Mo, E. D. Wachsman, L. Hu, Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer, Advanced Materials, 29, 1606042 (2017). Doi: https://doi.org/10.1002/adma.201606042
  39. K. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. Hu, Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries, Angewandte Chemie International Edition, 56, 14942 (2017). Doi: https://doi.org/10.1002/anie.201708637
  40. B. Liu, Y. Gong, K. Fu, X. Han, Y. Yao, G. Pastel, C. Yang, H. Xie, E. D. Wachsman, L. Hu, Garnet Solid Electrolyte Protected Li-Metal Batteries, ACS Applied Materials & Interfaces, 9, 18809 (2017). Doi: https://doi.org/10.1021/acsami.7b03887
  41. A. Kato, A. Hayashi, M. Tatsumisago, Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films, Journal of Power Sources, 309, 27 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2016.01.068
  42. M. Ogawa, R. Kanda, K. Yoshida, T. Uemura, K. Harada, High-capacity thin film lithium batteries with sulfide solid electrolytes, Journal of Power Sources, 205, 487 (2012). Doi: https://doi.org/10.1016/j.jpowsour.2012.01.086
  43. R. Xu, F. Han, X. Ji, X. Fan, J. Tu, C. Wang, Interface engineering of sulfide electrolytes for all-solid-state lithium batteries, Nano Energy, 53, 958 (2018). Doi: https://doi.org/10.1016/j.nanoen.2018.09.061
  44. A. Kizilaslan, H. Akbulut, Assembling All-Solid-State Lithium-Sulfur Batteries with Li3N-Protected Anodes, ChemPlusChem, 84, 183 (2019). Doi: https://doi.org/10.1002/cplu.201800539
  45. H. Buschmann, S. Berendts, B. Mogwitz, J. Janek, Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12" and Li7-x<.sub>La3Zr2-xTaxO12 with garnet-type structure, Journal of Power Sources, 206, 236 (2012). Doi: https://doi.org/10.1016/j.jpowsour.2012.01.094
  46. K. Ishiguro, Y. Nakata, M. Matsui, I. Uechi, Y. Takeda, O. Yamamoto, N. Imanishi, Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal, Journal of The Electrochemical Society, 160, A1690 (2013). Doi: https://doi.org/10.1149/2.036310jes
  47. F. Han, J. Yue, X. Zhu, C. Wang, Suppressing Li Dendrite Formation in Li2S-P2S5 Solid Electrolyte by LiI Incorporation, Advanced Energy Materials, 8, 1703644 (2018). Doi: https://doi.org/10.1002/aenm.201703644
  48. Y. Tao, S. Chen, D. Liu, G. Peng, X. Yao, X. Xu, Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells, Journal of The Electrochemical Society, 163, A96 (2016). Doi: https://doi.org/10.1149/2.0311602jes
  49. R.-c. Xu, X.-h. Xia, X.-l. Wang, Y. Xia, J.-p. Tu, Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries, Journal of Materials Chemistry A, 5, 2829 (2017). Doi: https://doi.org/10.1039/C6TA10142A
  50. G. Liu, D. Xie, X. Wang, X. Yao, S. Chen, R. Xiao, H. Li, X. Xu, High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries, Energy Storage Materials, 17, 266 (019). Doi: https://doi.org/10.1016/j.ensm.2018.07.008
  51. H. Zhang, X. Li, S. Hao, X. Zhang, J. Lin, Inducing interfacial progress based on a new sulfide-based composite electrolyte for all-solid-state lithium batteries, Electrochimica Acta, 325, 134943 (2019). Doi: https://doi.org/10.1016/j.electacta.2019.134943
  52. Y. Sun, K. Suzuki, K. Hara, S. Hori, T.-a. Yano, M. Hara, M. Hirayama, R. Kanno, Oxygen substitution effects in Li10GeP2S12 solid electrolyte, Journal of Power Sources, 324, 798 (2016). Doi: https://doi.org/10.1016/j.jpow-sour.2016.05.100
  53. Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen, All-in-one improvement toward Li6PS5Br-Based solid electrolytes triggered by compositional tune, Journal of Power Sources, 410-411, 162 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2018.11.016
  54. C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, L. Hu, Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework, Proceedings of the National Academy of Sciences, 115, 3770 (2018). Doi: https://doi.org/10.1073/pnas.1719758115
  55. G. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture, Materials Today, 22, 50 (2019). Doi: https://doi.org/10.1016/j.mat-tod.2018.04.004
  56. S. Shinzo, E. Higuchi, M. Chiku, A. Hayashi, H. Inoue, High-Rate Lithium Metal Plating and Stripping on Solid Electrolytes Using a Porous Current Collector with a High Aperture Ratio, ACS Applied Energy Materials, 4, 12613 (2021). Doi: https://doi.org/10.1021/acsaem.1c02378
  57. M. Sakuma, K. Suzuki, M. Hirayama, R. Kanno, Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes, Solid State Ionics, 285, 101 (2016). Doi: https://doi.org/10.1016/j.ssi.2015.07.010
  58. C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker, Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries, Electrochimica Acta, 215, 93 (2016). Doi: https://doi.org/10.1016/j.electacta.2016.08.081
  59. J.-M. Doux, H. Nguyen, D. H. S. Tan, A. Banerjee, X. Wang, E. A. Wu, C. Jo, H. Yang, Y. S. Meng, Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries, Advanced Energy Materials, 10, 1903253 (2020). Doi: https://doi.org/10.1002/aenm.201903253
  60. L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes, ACS Applied Materials & Interfaces, 7, 2073 (2015). Doi: https://doi.org/10.1021/am508111r