• Title/Summary/Keyword: Algebraic thinking

Search Result 77, Processing Time 0.025 seconds

Characteristics of Algebraic Thinking and its Errors by Mathematically Gifted Students (수학영재의 대수적 사고의 특징과 오류 유형)

  • Kim, Kyung Eun;Seo, Hae Ae;Kim, Dong Hwa
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.211-230
    • /
    • 2016
  • The study aimed to investigate the characteristics of algebraic thinking of the mathematically gifted students and search for how to teach algebraic thinking. Research subjects in this study included 93 students who applied for a science gifted education center affiliated with a university in 2015 and previously experienced gifted education. Students' responses on an algebraic item of a creative thinking test in mathematics, which was given as screening process for admission were collected as data. A framework of algebraic thinking factors were extracted from literature review and utilized for data analysis. It was found that students showed difficulty in quantitative reasoning between two quantities and tendency to find solutions regarding equations as problem solving tools. In this process, students tended to concentrate variables on unknown place holders and to had difficulty understanding various meanings of variables. Some of students generated errors about algebraic concepts. In conclusions, it is recommended that functional thinking including such as generalizing and reasoning the relation among changing quantities is extended, procedural as well as structural aspects of algebraic expressions are emphasized, various situations to learn variables are given, and activities constructing variables on their own are strengthened for improving gifted students' learning and teaching algebra.

Awareness and Knowledge of Pre-Service Teachers on Mathematical Concepts: Arithmetic Series Case Study

  • Ilya, Sinitsky;Bat-Sheva, Ilany
    • Research in Mathematical Education
    • /
    • v.12 no.3
    • /
    • pp.215-233
    • /
    • 2008
  • Deep comprehension of basic mathematical notions and concepts is a basic condition of a successful teaching. Some elements of algebraic thinking belong to the elementary school mathematics. The question "What stays the same and what changes?" link arithmetic problems with algebraic conception of variable. We have studied beliefs and comprehensions of future elementary school mathematics teachers on early algebra. Pre-service teachers from three academic pedagogical colleges deal with mathematical problems from the pre-algebra point of view, with the emphasis on changes and invariants. The idea is that the intensive use of non-formal algebra may help learners to construct a better understanding of fundamental ideas of arithmetic on the strong basis of algebraic thinking. In this article the study concerning arithmetic series is described. Considerable number of pre-service teachers moved from formulas to deep comprehension of the subject. Additionally, there are indications of ability to apply the conception of change and invariance in other mathematical and didactical contexts.

  • PDF

An analysis of solution methods by fifth grade students about 'reverse fraction problems' ('역 분수 문제'에 대한 5학년 학생들의 해결 방법 분석)

  • Pang, JeongSuk;Cho, SeonMi
    • The Mathematical Education
    • /
    • v.58 no.1
    • /
    • pp.1-20
    • /
    • 2019
  • As the importance of algebraic thinking in elementary school has been emphasized, the links between fraction knowledge and algebraic thinking have been highlighted. In this study, we analyzed the solution methods and characteristics of thinking by fifth graders who have not yet learned fraction division when they solved 'reverse fraction problems' (Pearn & Stephens, 2018). In doing so, the contexts of problems were extended from the prior study to include the following cases: (a) the partial quantity with a natural number is discrete or continuous; (b) the partial quantity is a natural number or a fraction; (c) the equivalent fraction of partial quantity is a proper fraction or an improper fraction; and (d) the diagram is presented or not. The analytic framework was elaborated to look closely at students' solution methods according to the different contexts of problems. The most prevalent method students used was a multiplicative method by which students divided the partial quantity by the numerator of the given fraction and then multiplied it by the denominator. Some students were able to use a multiplicative method regardless of the given problem contexts. The results of this study showed that students were able to understand equivalence, transform using equivalence, and use generalizable methods. This study is expected to highlight the close connection between fraction and algebraic thinking, and to suggest implications for developing algebraic thinking when to deal with fraction operations.

An analysis of algebraic thinking of fourth-grade elementary school students (초등학교 4학년 학생들의 대수적 사고 분석)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • Communications of Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.137-164
    • /
    • 2008
  • Given the importance of early experience in algebraic thinking, we designed six consecutive lessons in which $4^{th}$ graders were encouraged to recognize patterns in the process of finding the relationships between two quantities and to represent a given problem with various mathematical models. The results showed that students were able to recognize patterns through concrete activities with manipulative materials and employ various mathematical models to represent a given problem situation. While students were able to represent a problem situation with algebraic expressions, they had difficulties in using the equal sign and letters for the unknown value while they attempted to generalize a pattern. This paper concludes with some implications on how to connect algebraic thinking with students' arithmetic or informal thinking in a meaningful way, and how to approach algebra at the elementary school level.

  • PDF

Mathematical Thinking and Developing Mathematical Structure

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.14 no.1
    • /
    • pp.33-50
    • /
    • 2010
  • The mathematical thinking which transforms important mathematical content and developed into mathematical structure is a vital process in building up mathematical ability as mathematical knowledge based on structure. Such process based on students' recognition of mathematical concept. Developing mathematical thinking into mathematical structure happens when different cognitive units are connected and compressed to form schema of solution, which could happen through some guided problems. The effort of arithmetic approach in problem solving did not necessarily provide students the structure schema of solution. The using of equation to solve the problem is based on the schema of building equation, and is not necessary recognizing the structure of the solution, as the recognition of structure may be lost in the process of simplification of algebraic expressions, leaving only the final numeric answer of the problem.

An Analysis of Third Graders' Functional Thinking (초등학교 3학년 학생들의 함수적 사고 분석)

  • Kim, Jeong-Won;Pang, Jeong-Suk
    • Education of Primary School Mathematics
    • /
    • v.11 no.2
    • /
    • pp.105-119
    • /
    • 2008
  • Functional thinking, which focuses on the relationship between two or more varying quantities, is one of the key strands of algebraic thinking. This article is a case study that aimed to investigate how 3rd grade elementary students might make their functional thinking. The results showed that students not only understood the functional situation well but also created a record of the corresponding values of quantities, typically using descriptive writings and pictures. But when they tried to find a pattern and make a generalization, the students showed various difficulties. This paper concludes with implications on how to promote students' functional thinking from early grades in the elementary school.

  • PDF

Algebraic Kripke-style semantics for substructural fuzzy logics (준구조 퍼지 논리를 위한 대수적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.19 no.2
    • /
    • pp.295-322
    • /
    • 2016
  • This paper deals with Kripke-style semantics, which will be called algebraic Kripke-style semantics, for fuzzy logics based on uninorms (so called uninorm-based logics). First, we recall algebraic semantics for uninorm-based logics. In the general framework of uninorm-based logics, we next introduce various types of general algebraic Kripke-style semantics, and connect them with algebraic semantics. Finally, we analogously consider particular algebraic Kripke-style semantics, and also connect them with algebraic semantics.

  • PDF

Algebraic Kripke-style Semantics for Three-valued Paraconsistent Logic (3치 초일관 논리를 위한 대수적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.17 no.3
    • /
    • pp.441-461
    • /
    • 2014
  • This paper deals with one sort of Kripke-style semantics for three-valued paraconsistent logic: algebraic Kripke-style semantics. We first introduce two three-valued systems, define their corresponding algebraic structures, and give algebraic completeness results for them. Next, we introduce algebraic Kripke-style semantics for them, and then connect them with algebraic semantics.

  • PDF

Algebraic Kripke-Style Semantics for Weakly Associative Fuzzy Logics (약한 결합 원리를 갖는 퍼지 논리를 위한 대수적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.21 no.2
    • /
    • pp.155-174
    • /
    • 2018
  • This paper deals with Kripke-style semantics, which will be called algebraic Kripke-style semantics, for weakly associative fuzzy logics. First, we recall algebraic semantics for weakly associative logics. W next introduce algebraic Kripke-style semantics, and also connect them with algebraic semantics.

Algebraic Routley-Meyer-style semantics for the fuzzy logic MTL (퍼지 논리 MTL을 위한 대수적 루트리-마이어형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.21 no.3
    • /
    • pp.353-371
    • /
    • 2018
  • This paper deals with Routley-Meyer-style semantics, which will be called algebraic Routley-Meyer-style semantics, for the fuzzy logic system MTL. First, we recall the monoidal t-norm logic MTL and its algebraic semantics. We next introduce algebraic Routley-Meyer-style semantics for it, and also connect this semantics with algebraic semantics.