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1. Introduction

In this paper, we investigate Kripke-style semantics, called 
algebraic Kripke-style semantics, for weakly associative fuzzy 
logics. These logics are substrucutural logics, which are lacking 
structural rules such as weakening and contraction, with weak 
forms of associativity in place of associativity itself.  

For this, let us first recall some relationships between 
substructural fuzzy logics and (algebraic) Kripke-style semantics. 
After Kripke first introduced the so-called Kripke semantics for 
modal and intuitionistic logics in Kripke (1963; 1965a; 1965b) 
using binary accessibility relations, many semantics generalizing 
them, the so-called Kripke-style semantics, have been provided for 
many-valued logics. As Yang (2014a; 2016a) mentioned, there are 
at least two trends in generalization for many-valued logics. One 
is to provide model structures with binary relations, but without 
operations. The other is to provide model structures with both 
operations and binary relations.1)

This work is related with the second trend. First, recall his 
statements on the second trend introduced in Yang (2016a). 

The other trend is to provide model structures with both operations 
and binary relations. Various types of these semantics have been 
provided for infinite-valued or fuzzy logics (see Diaconescu & Georgescu 

1) In Yang (2014b), he introduced three trends. But we follow his consideration 
in Yang (2014a). Because the other trend is to provide model structures 
with at least ternnary relations. Here we are only interested in Kripke-style 
semantics based on binary relations. 
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(2007), Montagna & Ono (2002), Montagna & Sacchetti (2003), Yang 
(2012b)). In particular, after semantics for the infinite-valued Łukasiewicz 
logic Ł was introduced by Urquhart (1986), many Kripke-style semantics 
were recently provided for fuzzy logics based on t-norms (so called 
t-norm-based logics) by Montagna-Ono (2002), Montagna-Sacchetti (2003; 
2004), and Diaconescu-Georgescu (2007). These logics all have both 
operational and binary relational semantics. Thus, semantics with this 
trend are said to be operational and binary relational Kripke-style 
semantics(Yang (2016a), p. 297). 

One important and interesting kind of this trend is to study so 
called algebraic Kripke-style semantics, which are Kripke-style 
semantics being equivalent to algebraic semantics in that 
completeness is provided by this equivalence.

Note that some of the authors introduced in the above citation 
provided algebraic Kripke-style semantics for t-norm2) based logics 
after algebraic semantics for those logics were first introduced 
(Montagna-Ono (2002), Montagna-Sacchetti (2003; 2004)). Yang has 
generalized this idea to uninorm3) based logics. That is, he has 
introduced algebraic Kripke-style semantics for uninorm based 
logics in Yang (2012; 2014a; 2016a).

T-norms and uninorms require associativity. Recently, some 
logicians have introduced a non-associative generalization of logics 
based on t-norms and uninorms (see Cintula & Noguera (2011), 
Cintula et al (2013, 2015), Horĉík (2011), Yang (2015a; 2015b; 
2016c; 2017a; 2017b). In particular, Yang (2016b; 2017c) has 

2) T-norms are commutative, associative, monotonic, binary functions 
on the unit interval [0, 1] with identity elements 1.

3) Uninorms are t-norms having their identity lying somewhere in [0, 1].
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introduced weakly associative fuzzy logics as fuzzy logics with 
weak forms of associativity in place of associativity itself. 
However, for these logics, he has considered only algebraic 
semantics. This gives rise to the following natural question:

● Do algebraically complete non-associative fuzzy logics also 
have algebraic Kripke-style semantics?

This paper gives a positive answer for some systems as a 
starting point of this work. More precisely, we provide algebraic 
Kripke-style semantics for the weakly associative fuzzy logics 
introduced in Yang (2016b). For this, first, in Section 2 we recall  
the wta-monoidal uninorm logic WAtMUL and its axiomatic 
extensions, and their algebraic semantics. In Section 3, we 
introduce algebraic Kripke-style semantics for those systems, and 
connect them with algebraic semantics.

For convenience, we shall adopt the notation and terminology 
similar to those in Montagna & Sacchetti (2003; 2004) Yang 
(2016b; 2017c), and assume reader familiarity with them (together 
with results found therein).

2. Preliminaries: weakly associative fuzzy logics and their 
algebraic semantics

Here we briefly recall the systems and their algebraic 
semantics introduced in Yang (2014a) as preliminaries. Weakly 
associative fuzzy logics are based on a countable propositional 
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language with formulas Fm built inductively as usual from a set 
of propositional variables VAR, binary connectives →, &, ∧, ∨, 
and constants T, F, f, t. Further definable connectives are:

df1. ￢φ := φ → f,
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φn
t as φt & 

… & φt, n factors, where φt := φ ∧ t. For the rest of this 
paper, we use the customary notations and terminology, and the 
axiom systems to provide a consequence relation.

We start with the following axiom schemes and rules for the 
weak t-associative monoidal uninorm logic WAtMUL and its two 
axiomatic extensions.

Definition 2.1 (Yang (2016b)) (i) WAtMUL consists of the 
following axiom schemes and rules:

A1. φ → φ  (self-implication, SI)
A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. F → φ  (ex falsum quodlibet, EF)
A7. (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)
A8. φ ↔ (t → φ)  (push and pop, PP)
A9. φ → (ψ → (ψ & φ))  (&-adjunction, &-Adj)
A10. (φt & ψt) → (φ ∧ ψ)  (&∧)
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A11. (ψ & (φ & (φ → (ψ → χ)))) → χ  (residuation, Res')
A12. (φ→((φ & (φ → ψ)) & (ψ → χ))) → (φ → χ)  (T')
A13. ((δ&ε)→(δ&(ε&(φ→ψ)t)))∨(δ'→(ε'→((ε'&δ')&(ψ→φ)t))) 

(PL) 
A14. (φt&(ψt&χt)) ↔ ((φt&ψt)&χt)  (weak t-associativity, 

wASt)
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ ⊢ φt  (adju) 
φ ⊢ (δ & ε) → (δ & (ε & φ)) (α) 
φ ⊢ δ → (ε → ((ε & δ) & φ)) (β).
(ii) The following are weakly associative fuzzy logics that 

axiomatically extend WAtMUL:
• t-associative (ta-) monoidal uninorm logic AtMUL is 

WAtMUL plus 
(ASt) (φ & (ψ & χ))t ↔ ((φ & ψ) & χ)t;  
(REt) (φ → (ψ → χ))t ↔ ((φ & ψ) → χ)t;
(SFt) (φ → ψ)t → ((ψ → χ) → (φ → χ));  
(PFt) (ψ → χ)t → ((φ → ψ) → (φ → χ)); and  
(MTt) (φ → ψ)t → ((φ & χ) → (ψ & χ)).
• Strong ta-monoidal uninorm logic SAtMUL is AtMUL plus 
(sASt) (φt & (ψ & χ)) ↔ ((φt & ψ) & χ).

For easy reference, we let Ls be a set of weakly associative 
fuzzy logics defined previously.

Definition 2.2 Ls = {WAtMUL, AtMUL, SAtMUL}.
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In L (∈  Ls), f can be defined as ￢t and vice versa.
A theory over L (∈ Ls) is a set T of formulas. A proof in a 

sequence of formulas whose each member is either an axiom of 
L or a member of T or follows from some preceding members of 
the sequence using a rule of L. T ⊢ φ, more exactly T ⊢L φ, 
means that φ is provable in T w.r.t. L, i.e., there is an L-proof 
of φ in T. A theory T is inconsistent if T ⊢ F; otherwise it is 
consistent.

The deduction theorem for L is as follows:

Proposition 2.3 Let T be a theory, and φ, ψ formulas. 
(i) (Cintula et al. (2013; 2015)) T ∪ {φ} ⊢L ψ iff T ⊢L γ

(φ) → ψ for some γ ∈ Π(bDT*).4)

(ii) (Yang (2009)) For L ∈ {AtMUL, SAtMUL}, T ∪ {φ} ⊢

L ψ iff there is n such that T ⊢L φn
t → ψ.

For convenience, “￢”, “∧”, “∨”, and “→” are used 
ambiguously as propositional connectives and as algebraic 
operators, but context should clarify their meanings.

Suitable algebraic structures for L (∈ Ls) are obtained as 
varieties of residuated lattice-ordered unital groupoids (briefly, 
rlu-groupoids) in the sense of Galatos et al. (2007).

Definition 2.4 (i) A pointed bounded commutative rlu-groupoid 
is a structure A = (A, ⊤, ⊥, t, f, ∧, ∨, *, →) such that:

(Ⅰ) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 

 4) For γ and Π(bDT*), see Cintula et al. (2013; 2015) and Yang (2015a).
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⊤ and bottom element ⊥.
(Ⅱ) (A, *, t) is a commutative groupoid with unit.
(Ⅲ) y ≤ x → z iff x * y ≤ z, for all x, y, z ∈ A 

(residuation).
(ii) (Yang (2015a)) An MICAL-algebra is a pointed bounded 

commutative rlu-groupoid satisfying: for all x, y, z, w, z', w' 
∈ A,
(PLA) t ≤ ((z*w) → (z*(w*(x→y)t))) ∨ (z' → (w'→((w'*z')*(y
→x)t))).

Definition 2.5 (L-algebras, Yang (2016a)) A WAtMUL-algebra 
is an MICAL-algebra satisfying: (wASt

A) xt * (yt * zt) = (xt * yt) 
* zt, for all x, y, z ∈ A; an AtMUL-algebra is an 
MICAL-algebra satisfying: for all x, y, z ∈ A, (ASt

A) (x * (y * 
z))t = ((x * y) * z)t, (REt

A) (x → (y → z))t = ((x * y) → z)t, 
(SFt

A) (x → y)t ≤ ((y → z) → (x → z)), (PFt
A) (y → z)t ≤ 

((x → y) → (x → z)), and (MTt
A) (x → y)t ≤ ((x * z) → (y 

* z)); an SAtMUL-algebra is an AtMUL-algebra satisfying: (sASt
A) 

xt * (y * z) = (xt * y) * z, for all x, y, z ∈ A. We call all 
these algebras L-algebras.

A commutative unital groupoid (A, *, t) satisfying 
(associativity) x * (y * z) = (x * y) * z on [0, 1] is a uninorm 
and this is a t-norm in case t = ⊤.

By xn, we denote x * … * x, n factors. Using → and f we 
can define t as f → f, and ￢ as in (df1).

For L (∈  Ls), an L-algebra is said to be linearly ordered if 



Algebraic Kripke-Style Semantics for Weakly Associative Fuzzy Logics 163

the ordering of its algebra is linear, i.e., x ≤ y or y ≤ x 
(equivalently, x ∧ y = x or x ∧ y = y) for each pair x, y. 
Note that, if an L-algebra is linearly ordered, each algebra can be 
defined as follows: A WAtMUL-algebra is an MICAL-algebra 
satisfying (wASt

A’) x * (y * z) = (x * y) * z if x, y, z ≤ t; an 
AtMUL-algebra is an MICAL-algebra satisfying (ASt

A’) min{x * 
(y * z), t} = {(x * y) * z, t} for all x, y, z ∈ A: and an 
SAtMUL-algebra is an MICAL-algebra satisfying (sASt

A’) x * (y 
* z) = (x * y) * z if x ≤ t or y ≤ t or  z ≤ t.

 
Definition 2.6 (Evaluation) Let A be an algebra. An 

A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 
v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨
v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(T) = ⊤, v(F) = ⊥, v(f) = f, 
(and hence v(￢φ) = ￢v(φ) and v(t) = t).

Definition 2.7 Let A be an L-algebra, T be a theory, φ be a 
formula, and K be a class of L-algebras.

(i) (Tautology) φ is a t-tautology in A, briefly an A-tautology 
(or A-valid), if v(φ) ≥ t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ t 
for each φ ∈ T. We denote the class of A-models of T, by 
Mod(T, A).

(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 
A) for each A ∈ K.
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Definition 2.8 (L-algebra) Let A, T, and φ be as in Definition 
2.7. A is an L-algebra iff, whenever φ is L-provable in T (i.e. T 
⊢L φ, L an L logic), it is a semantic consequence of T w.r.t. 
the set {A} (i.e. T⊨ φ), A a corresponding L-algebra). By 
MOD(l)(L), we denote the class of (linearly ordered) L-algebras. 
Finally, we write T ⊨(l)

L φ in place of T ⊨MOD
(l)

(L) φ.

Theorem 2.9 (Strong completeness, Yang (2016b)) Let T be a 
theory, and φ a formula. T ⊢L φ iff T ⊨L φ iff T ⊨l

L φ.

Definition 2.10 An L-algebra is standard iff its lattice reduct 
is [0, 1].

Theorem 2.11 (Strong standard completeness, Yang (2016b))  
For WAtMUL, the following are equivalent:

(1) T ⊢WAtMUL φ.
(2) For every standard WAtMUL-algebra and evaluation v, if v

(ψ) ≥ ℯ for all ψ ∈ T, then v(φ) ≥ ℯ.

3. Algebraic Kripke-style semantics

Here, we consider general algebraic Kripke-style semantics for 
UL and its extensions.

Definition 3.1 (i) (Algebraic Kripke frame) An algebraic 
Kripke frame is a structure X = (X, ⊤, ⊥, t, f, ≤, ＊, →) 
such that (X, ⊤, ⊥, t, f, ≤, ＊, →) is a linearly ordered 
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pointed bounded commutative rlu-groupoid. The elements of X are 
called nodes.

(ii) (MICAL frame) An MICAL frame is an algebraic Kripke 
frame, where ＊ is conjunctive (i.e., ⊥ ＊ ⊤ = ⊥) and 
left-continuous (i.e., whenever sup{xi : i ∈ I} exists, x ＊ sup{xi 

: i ∈ I} = sup{x ＊ xi : i ∈ I}), and so its residuum → is 
defined as x → y := sup{z: x ＊ z ≤ y} for all x, y ∈ X.

Definition 3.2 (L frame) A WAtMUL frame is an MICAL 
frame satisfying (wASt

A’); an AtMUL frame is an MICAL frame 
satisfying (ASt

A’); and an SAtMUL frame is an AtMUL frame 
satisfying (sASt

A’). We call all these frames L frames.

Definition 3.1 (ii) ensures that an MICAL frame has a 
supremum w.r.t. ＊, i.e., for every x, y ∈ X, the set {z: x ＊ z 
≤ y} has the supremum. X is said to be complete if ≤ is a 
complete order.

An evaluation or forcing on an algebraic Kripke frame is a 
relation ⊩ between nodes and propositional variables, and 
arbitrary formulas subject to the conditions below: for every 
propositional variable p,

(AHC) if x ⊩ p and y ≤ x, then y ⊩ p;
(min)   ⊥ ⊩ p; and

for arbitrary formulas,
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(t)   x ⊩ t  iff x ≤ t;
(f)   x ⊩ f  iff x ≤ f;
(⊥)  x ⊩ F iff x = ⊥;
(∧)  x ⊩ φ ∧ ψ iff x ⊩ φ and x ⊩ ψ;
(∨)  x ⊩ φ ∨ ψ iff x ⊩ φ or x ⊩ ψ;
(&)  x ⊩ φ & ψ  iff there are y, z ∈ X such that y ⊩ φ, 

z ⊩ ψ, and x ≤ y ＊ z;
(→)  x ⊩ φ → ψ iff for all y ∈ X, if y ⊩ φ, then x ＊ y 
⊩ ψ.

An evaluation or forcing on an L frame is an evaluation or 
forcing further satisfying that (max) for every atomic sentence p, 
{x : x ⊩ p} has a maximum.

Definition 3.3 (i) (Algebraic Kripke model) An algebraic 
Kripke model is a pair (X, ⊩), where X is an algebraic Kripke 
frame and ⊩ is a forcing on X.

(ii) (L model) An L model is a pair (X, ⊩), where X is an L 
frame and ⊩ is a forcing on X. an L model (X, ⊩) is said to 
be complete if X is a complete frame and ⊩ is a forcing on X.

Definition 3.4 Given an algebraic Kripke model (X, ⊩), a 
node x of X and a formula φ, we say that x forces φ to express 
x ⊩ φ. We say that φ is true in (X, ⊩) if t ⊩ φ, and that φ 

is valid in the frame X (expressed by X ⊨ φ) if φ is true in 
(X, ⊩) for every forcing ⊩ on X.
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For soundness and completeness for L, let ⊢L φ be the 
theoremhood of φ in L. First we can easily show the following 
lemma.

Lemma 3.5 (Cf, Yang (2016b)) (i) (Hereditary Lemma, HL) 
Let X be an algebraic Kripke frame. For any sentence φ and for 
all nodes x, y ∈ X, if x ⊩ φ and y ≤ x, then y ⊩ φ.

(ii) Let ⊩ be a forcing on an L frame, and φ a sentence. 
Then the set {x ∈ X : x ⊩ φ} has a maximum.

Proposition 3.6  (Soundness) If ⊢L φ, then φ is valid in 
every L frame.

Proof: We prove the validity of (wASt), (ASt), and (sASt) as 
examples.

(wASt) We need to show that t ⊩ (φt&(ψt&χt)) ↔ ((φt&ψt)&
χt). For the left-to-right direction, it suffices to assume x ⊩ φt & 
(ψt & χt) and show x ⊩ (φt & ψt) & χt. Let x ⊩ φt & (ψt & 
χt). Using the condition (&) twice, we have y ⊩ φt, z ⊩ ψt & 
χt, x ≤ y ＊ z, v ⊩ ψt, w ⊩ χt, and z ≤ v ＊ w. Thus, we 
also have x ≤ y ＊ z ≤ y ＊ (v * w). Then, since the 
conditions (t) and (∧) ensure that x, y, z ≤ t, we have y ＊ (v 
* w) = (y ＊ v) * w by (wASt

A’). Thus, using the condition (&) 
twice, we have y * v ⊩ φt & ψt and (y * v) * w ⊩ (φt & ψt) 
& χt; therefore, x ⊩ (φt & ψt) & χt since x ≤ y ＊ (v * w) = 
(y ＊ v) * w. Analogously, we can prove the right-to-left 
direction.
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(ASt) We need to show that t ⊩ (φ&(ψ&χ))t ↔ ((φ&ψ)&χ)t. 
For the left-to-right direction, it suffices to assume x ⊩ (φ & (ψ 

& χ))t and show x ⊩ ((φ & ψ) & χ)t. Let x ⊩ (φ & (ψ & 
χ))t. Using the conditions (t) and (∧), we have x ⊩ φ & (ψ & 
χ) and x ≤ t. Then, using the condition (&) twice, we have y 
⊩ φ, z ⊩ ψ & χ, x ≤ y ＊ z, v ⊩ ψ, w ⊩ χ, and z ≤ v 
＊ w. Thus, we also have x ≤ min{t, y ＊ z} ≤ min{t, y ＊
(v * w)}. Then, we have min{t, y ＊ (v * w)} = min{t, (y ＊
v) * w} by (ASt

A’). Thus, using the condition (&) twice, we 
have y * v ⊩ φ & ψ and (y * v) * w ⊩ (φ & ψ) & χ; 
therefore, using the conditions (t) and (∧), we obtain x ⊩ ((φ 

& ψ) & χ)t since x ≤ min{t, (y ＊ v) * w}. Analogously, we 
can prove the right-to-left direction.

(sASt) We need to show that t ⊩ φt&(ψ&χ) ↔ (φt&ψ)&χ. 
For the left-to-right direction, it suffices to assume x ⊩ φt & (ψ 

& χ) and show x ⊩ (φt & ψ) & χ. Let x ⊩ φt & (ψ & χ). 
Using the condition (&) twice, we have y ⊩ φt, z ⊩ ψ & χ, x 
≤ y ＊ z, v ⊩ ψ, w ⊩ χ, and z ≤ v ＊ w. Thus, we also 
have x ≤ y ＊ z ≤ y ＊ (v * w). Then, since the conditions 
(t) and (∧) ensure that y ≤ t, we have y ＊ (v * w) = (y ＊
v) * w by (sASt

A’). Thus, using the condition (&) twice, we have 
y * v ⊩ φt & ψ and (y * v) * w ⊩ (φt & ψ) & χ; therefore, 
x ⊩ (φt & ψ) & χ since x ≤ y ＊ (v * w) = (y ＊ v) * w. 
Analogously, we can prove the right-to-left direction. 

The proof for the other cases is left to the interested reader. 
□
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By a chain, we mean a linearly ordered algebra. The next 
proposition connects algebraic Kripke semantics and algebraic 
semantics for L (cf. see Montagna & Sacchetti (2004)).

Proposition 3.7 (i) The {⊤, ⊥, t, f, ≤, ＊, →} reduct of an 
L-chain A is an L frame, which is complete iff A is complete.
(ii) Let X = (X, ⊤, ⊥, t, f, ≤, ＊, →) be an L frame. Then 

the structure A = (X, ⊤, ⊥, t, f, max, min, ＊, →) is an 
L-algebra (where max and min are meant w.r.t. ≤).

(iii) Let X be the {⊤, ⊥, t, f, ≤, ＊, →} reduct of an L-chain 
A, and let v be an evaluation in A. Let for every atomic 
formula p and for every x ∈ A, x ⊩ p iff x ≤ v(p). Then 
(X, ⊩) is an L model, and for every formula φ and for every 
x ∈ A, we obtain that: x ⊩ φ iff x ≤ v(φ).

(iv) Let (X, ⊩) be an L model, and let A be the L-algebra 
defined as in (ii). Define for every atomic formula p, v(p) = 
max{x ∈ X : x ⊩ p}. Then for every formula φ, v(φ) = 
max{x ∈ X : x ⊩ φ}.

Proof: The proof for (i) and (ii) is easy. Since (iv) follows 
almost directly from (iii) and Lemma 3.6 (ii), we prove (iii). As 
regards to claim (iii), we consider the induction steps 
corresponding to the cases where φ = ψ & χ and φ = ψ → χ. 
(The proof for the other cases are trivial.)

Suppose φ = ψ & χ. By the condition (&), x ⊩ ψ & χ iff 
there are y, z ∈ X such that y ⊩ ψ, z ⊩ χ, and x ≤ y ＊ z, 
hence by the induction hypothesis, y ⊩ ψ and z ⊩ χ iff y ≤
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v(ψ) and z ≤ v(χ). Then, it holds true that x ≤ y ＊ z ≤ v
(ψ) ＊ v(χ) = v(ψ & χ). Conversely, if x ≤ v(ψ) ＊ v(χ) = v
(ψ & χ), then take y = v(ψ) and z = v(χ). Then we have x ≤
y ＊ z, y ⊩ ψ, and z ⊩ χ, therefore x ⊩ ψ & χ.

Suppose φ = ψ → χ. By the condition (→), x ⊩ ψ → χ 

iff for all y ∈ X, if y ⊩ ψ, then x ＊ y ⊩ χ, hence by the 
induction hypothesis, y ⊩ ψ only if x ＊ y ⊩ χ iff y ≤ v(ψ) 
only if x ＊ y ≤ v(χ), therefore iff x ＊ v(ψ) ≤ v(χ), 
therefore by residuation, iff x ≤ v(ψ) → v(χ) = v(ψ → χ), as 
desired. □

Theorem 3.8 (Strong completeness)
(i) L is strongly complete w.r.t. the class of all L-frames.
(ii) WAtMUL, is strongly complete w.r.t. the class of complete 

L-frames.

Proof: (i) and (ii) follow from Proposition 3.7 and Theorem 
2.9, and from Proposition 3.7 and Theorem 2.11, respectively. □

4. Concluding remark

We investigated here just algebraic Kripke-style semantics for 
some weakly associative fuzzy logics. Note that, while Yang 
provided algebraic semantics for other non-associative fuzzy logics 
in Yang (2015a; 2016c, 2017a, 2017c). we did not consider 
algebraic Kripke-style semantics for those systems. To provide 
such semantics for these logics remains a problem to be solved. 
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약한 결합 원리를 갖는 퍼지 논리를 위한 대수적 크립키형 
의미론

양 은 석

이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 

퍼지 논리를 위한 대수적 크립키형 의미론을 연구한다. 이를 위하

여 먼저 약한 결합 원리를 갖는 퍼지 논리의 대수적 의미론을 소

개한다. 다음으로 이 체계들을 위한 대수적 크립키형 의미론을 제

공한 후, 이를 대수적 의미론과 연관 짓는다.

주요어: (대수적) 크립키형 의미론, 약화 없는 퍼지 논리, 약한 

결합 원리, 대수적 의미론, 준구조 논리. 


