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be called algebraic Routley-Meyer-style semantics, for the fuzzy logic system 
MTL. First, we recall the monoidal t-norm logic MTL and its algebraic 
semantics. We next introduce algebraic Routley-Meyer-style semantics for it, 
and also connect this semantics with algebraic semantics. 
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1. Introduction

This paper investigates Routley-Meyer-style semantics, which is 
said to be algebraic Routley-Meyer-style semantics, for the 
substructural fuzzy logic MTL (Monoidal t-norm logic). Note that 
substructural logics lack structural rules like weakening or 
contraction, and fuzzy logics deal with vagueness. (Logics 
complete with respect to (w.r.t.) linearly ordered algebras are fuzzy 
in Cintula's sense (Cintula (2006)).)  

For this, we first recall some relationships between 
substructural fuzzy logics and Kripke-style semantics. After Kripke 
first introduced the so-called Kripke semantics for modal and 
intuitionistic logics in Kripke (1963; 1965a; 1965b) using binary 
accessibility relations, many semantics generalizing them, the 
so-called Kripke-style semantics, have been provided for 
many-valued logics. As mentioned in Yang (2014a), there are at 
least three trends in generalization for many-valued logics. One is 
to provide model structures with binary relations, but without 
operations. Another is to provide model structures with both 
operations and binary relations. The other is to provide model 
structures with generalizations of binary relations.

As the present author mentioned in Yang (2014a; 2014b), 
various types of semantics in the second trend have been 
provided for infinite-valued or fuzzy logics. In particular, after 
semantics for the infinite-valued Łukasiewicz logic Ł was 
introduced by Urquhart (1986), many Kripke-style semantics have 
been provided for fuzzy logics based on t-norms (so called 
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t-norm-based logics) by Montagna & Ono (2002), Montagna & 
Sacchetti (2003; 2004), and Diaconescu & Georgescu (2007). The 
author called this kind of semantics algebraic Kripke-style 
semantics, which are Kripke-style semantics being equivalent to 
algebraic semantics in that completeness is provided by this 
equivalence. Moreover, recently he has introduced such semantics 
for fuzzy logics based on more general structures such as 
uninorms (see Yang (2014a; 2014b; 2014c; 2016a; 2016b; 2018)). 

This work is related to the third trend. Note that among the 
generalizations in this trend, the most well-known one is 
Routley-Meyer semantics with ternary relations. This semantics was 
first introduced for relevance logics and then generalized for other 
non-classical logics. Let us call semantics with ternary relations 
Routley-Meyer-style semantics. While algebraic Kripke-style 
semantics for fuzzy logics have been introduced, such 
Routley-Meyer-style semantics have not yet been introduced. This 
gives rise to the following natural question:

● Do algebraically complete fuzzy logics also have algebraic 
Routley-Meyer-style semantics?

This paper gives a positive answer for this question. As its 
verification, we provide algebraic Routley-Meyer-style semantics 
for the monoidal t-norm-based logic MTL. For this, first, in 
Section 2 we recall  the fuzzy logic MTL and its algebraic 
semantics. In Section 3, we introduce algebraic 
Routley-Meyer-style semantics for it and connect this semantics 
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with algebraic semantics.
For convenience, we shall adopt the notations and terminology 

similar to those in Montagna & Sacchetti (2003; 2004) and Yang 
(2016b; 2017b), and assume reader familiarity with them (together 
with the results found therein).

2. Preliminaries: MTL and its algebraic semantics

Here we briefly recall the system MTL and its algebraic 
semantics introduced in Yang (2016b) as preliminaries. MTL is 
based on a countable propositional language with formulas Fm 
built inductively as usual from a set of propositional variables 
VAR, binary connectives →, &, ∧, ∨, and constants T, F. 
Further definable connectives are:

df1. ￢φ := φ → F,
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define T as F → F. For the rest of this paper, we 
use the customary notations and terminology, and the axiom 
systems to provide a consequence relation.

We start with the following axiom schemes and rules for the 
monoidal t-norm logic MTL.

Definition 2.1 (Yang (2016b)) MTL consists of the following 
axiom schemes and rules:

A1. φ → φ  (self-implication, SI)
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A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. F → φ  (ex falsum quodlibet, EF)
A7. φ → T  (verum ex quodlibet, VE)
A8. φ → (ψ → χ) ↔ ψ → (φ → χ)  (permutation, PM)
A9. (φ → (ψ → χ)) ↔ ((φ & ψ) → χ)  (residuation, RES)
A10. (φ → ψ) → ((ψ → χ) → (φ → χ))  (suffixing, SF)
A11. (φ & ψ) → φ  (weakening, W)
A12. (φ → ψ) ∨ (ψ → φ)  (prelinearity, PL)
φ → ψ, φ ⊢ ψ (mp)
φ, ψ ⊢ φ ∧ ψ (adj).

A theory over MTL is a set T of formulas. A proof in a 
sequence of formulas whose each member is either an axiom of 
MTL or a member of T or follows from some preceding 
members of the sequence using a rule of MTL. T ⊢ φ, more 
exactly T ⊢MTL φ, means that φ is provable in T w.r.t. MTL, 
i.e., there is an MTL-proof of φ in T. A theory T is inconsistent 
if T ⊢ F; otherwise it is consistent.

The deduction theorem for MTL is as follows:

Proposition 2.3 (Hájek (1998)) Let T be a theory, and φ, ψ 

formulas. 
T ∪ {φ} ⊢MTL ψ iff there is n such that T ⊢MTL φn → ψ.
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For convenience, “￢”, “∧”, “∨”, and “→” are used 
ambiguously as propositional connectives and as algebraic 
operators, but context should clarify their meanings.

Suitable algebraic structures for MTL are obtained as varieties 
of residuated lattice-ordered monoids (briefly, residuated monoids) 
in the sense of Galatos et al. (2007).

Definition 2.4 (i) An integral commutative residuated monoid 
is a structure A = (A, ⊤, ⊥, ∧, ∨, *, →) such that:

(Ⅰ) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 
⊤ and bottom element ⊥.

(Ⅱ) (A, *, ⊤) is a commutative monoid.
(Ⅲ) y ≤ x → z iff x * y ≤ z, for all x, y, z ∈ A 

(residuation).
(ii) An MTL-algebra is an integral commutative residuated monoid 

satisfying: for all x, y ∈ A,
(PLA) (x → y) ∨ (y → x) = ⊤.

By xn, we denote x * … * x, n factors. Using → and ⊥ we 
can define ⊤ as ⊥ → ⊥, and ￢ as in (df1).

An MTL-algebra is said to be linearly ordered if the ordering 
of its algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧
y = x or x ∧ y = y) for each pair x, y. 

 
Definition 2.6 (Evaluation) Let A be an MTL-algebra. An 

A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 
v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨
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v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(T) = ⊤, v(F) = ⊥, (and 
hence v(￢φ) = ￢v(φ)).

Definition 2.7 Let A be an MTL-algebra, T be a theory, φ be 
a formula, and K be a class of MTL-algebras.
(i) (Tautology) φ is a tautology in A, briefly an A-tautology (or 
A-valid), if v(φ) = ⊤ for each A-evaluation v.
(ii) (Model) An A-evaluation v is an A-model of T if v(φ) = ⊤ 
for each φ ∈ T. We denote the class of A-models of T, by 
Mod(T, A).
(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 
A) for each A ∈ K.

Definition 2.8 (MTL-algebra) Let A, T, and φ be as in 
Definition 2.7. A is an MTL-algebra iff, whenever φ is 
MTL-provable in T (i.e. T ⊢MTL φ), it is a semantic consequence 
of T w.r.t. the set {A} (i.e. T⊨ φ), A a corresponding 
MTL-algebra). By MODl(MTL), we denote the class of linearly 
ordered MTL-algebras. Finally, we write T ⊨l

MTL φ in place of 
T ⊨MOD

l
(MTL) φ.

Theorem 2.9 (Strong completeness, Jenei & Montagna (2002)) 
Let T be a theory, and φ a formula. T ⊢MTL φ iff T ⊨MTL φ 

iff T ⊨l
MTL φ.

Definition 2.10 An MTL-algebra is standard iff its lattice 
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reduct is [0, 1].

Theorem 2.11 (Strong standard completeness, Jenei & 
Montagna (2002))  For MTL, the following are equivalent:
(1) T ⊢MTL φ.
(2) For every standard MTL-algebra and evaluation v, if v(ψ) = 1 
for all ψ ∈ T, then v(φ) = 1.

3. Algebraic Routley-Meyer-style semantics

3.1 Semantics

We first introduce several Routley-Meyer-style frames.

Definition 3.1 (i) (Algebraic Kripke frame) An algebraic 
Kripke frame is a structure X = (X, ⊤, ⊥, ≤, *) such that (X, 
⊤, ⊥, ≤, *) is a linearly ordered integral residuated monoid. 
The elements of X are called nodes.

(ii) (Algebraic Routley-Meyer frame) An algebraic 
Routley-Meyer frame is a structure X = (X, ⊤, ⊥, ≤, *, R) 
such that (X, ⊤, ⊥, ≤, *) is an algebraic Kripke frame and R 
(⊆ X3) satisfies the following postulates: for all a ∈ X,

 p1. R⊤⊤⊤
 p2. R⊤aa
 p3. Ra⊤a.
(iii) (MTL frame) An MTL frame is an algebraic 

Routley-Meyer frame, where * is conjunctive (i.e., ⊥ * ⊤ = ⊥) 
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and left-continuous (i.e., whenever sup{xi : i ∈ I} exists, x * 
sup{xi : i ∈ I} = sup{x * xi : i ∈ I}), and so its residuum →
is defined as x → y := sup{z: x * z ≤ y} for all x, y ∈ X, 
and the following definitions and postulate hold: for all a, b, c, d 
∈ X,

df3. R2abcd := (∃x)(Rabx ∧ Rxcd)
df4. R2a(bc)d := (∃x)(Raxd ∧ Rbcx)
pl. R⊤ab or R⊤ba
pi. Rabc implies R⊤bc.
pe. Rabc implies Rbac.
pa. R2abcd iff R2a(bc)d.

Definition 3.1 (iii) ensures that an MTL frame has a 
supremum w.r.t. *, i.e., for every x, y ∈ X, the set {z: x * z 
≤ y} has the supremum. X is said to be complete if ≤ is a 
complete order.

An evaluation or forcing on an algebraic Routley-Meyer frame 
is a relation ⊩ between nodes and propositional variables, and 
arbitrary formulas subject to the conditions below: for every 
propositional variable p,

(AHC) if x ⊩ p and y ≤ x, then y ⊩ p;
(min)   ⊥ ⊩ p; and

for arbitrary formulas,

(⊥)  x ⊩ F iff x = ⊥;
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(∧)  x ⊩ φ ∧ ψ = iff x ⊩ φ and x ⊩ ψ;
(∨)  x ⊩ φ ∨ ψ  iff x ⊩ φ or x ⊩ ψ;
(&)  x ⊩ φ & ψ  iff there are y, z ∈ X such that Rzyx, y 
⊩ φ, and z ⊩ ψ;

(→)  x ⊩ φ → ψ iff for all y, z ∈ X, if Ryxz and y ⊩ φ, 
then z ⊩ ψ.

An evaluation or forcing on an MTL frame is an evaluation 
or forcing further satisfying that (max) for every atomic sentence 
p, {x : x ⊩ p} has a maximum.

Definition 3.2 (i) (Algebraic Routley-Meyer model) An 
algebraic Routley-Meyer model is a pair (X, ⊩), where X is an 
algebraic Routley-Meyer frame and ⊩ is a forcing on X.
(ii) (MTL model) An MTL model is a pair (X, ⊩), where X is 
an MTL frame and ⊩ is a forcing on X. An MTL model (X, 
⊩) is said to be complete if X is a complete frame and ⊩ is a 
forcing on X.

Definition 3.3 Given an algebraic Routley-Meyer model (X, 
⊩), a node x of X and a formula φ, we say that x forces φ to 
express x ⊩ φ. We say that φ is true in (X, ⊩) if t ⊩ φ, and 
that φ is valid in the frame X (expressed by X ⊨ φ) if φ is 
true in (X, ⊩) for every forcing ⊩ on X.

Definition 3.4 An MTL frame X is an MTL frame if all 
axioms of MTL are valid in X. We say that an algebraic 
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Routley-Meyer model X is an MTL model if X is an MTL frame.

3.2 Soundness and completeness

For soundness and completeness for MTL, let ⊢MTL φ be the 
theoremhood of φ in MTL. For this, we first define R as 
follows:

(df5) Rabc := c ≤ b * a.

We can easily show the following lemmas.

Lemma 3.5 (Cf, Yang (2016b)) (i) (Hereditary Lemma, HL) 
Let X be an algebraic Routley-Meyer frame. For any sentence φ 

and for all nodes x, y ∈ X, if x ⊩ φ and y ≤ x, then y ⊩
φ.
(ii) Let ⊩ be a forcing on an MTL frame, and φ a sentence. 
Then the set {x ∈ X : x ⊩ φ} has a maximum.

Lemma 3.6 ⊤ ⊩ φ → ψ iff for all x ∈ X, if x ⊩ φ, then 
x ⊩ ψ.

Proof: By the condition (→), we have that ⊤ ⊩ φ → ψ iff 
for all x ∈ X, if Rx⊤x and x ⊩ φ, then x ⊩ ψ. Then, since 
we have Ra⊤a by the postulate (p3), we can ensure the claim by 
the condition (→). □
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Proposition 3.7  (Soundness) If ⊢MTL φ, then φ is valid in 
every MTL frame.

Proof: We prove the validity of (pi) and (pe) as examples.
(pi) We need to show that ⊤ ⊩ φ → (ψ → φ). By Lemma 

3.6, it suffices to assume x ⊩ φ and show x ⊩ ψ → φ. To 
show this, using the condition (→), we further assume that Ryxz 
and y ⊩ ψ, and show that z ⊩ φ. By the suppositions and the 
postulate (pi), we have R⊤xz. Then, by (df5), we further have 
that z ≤ x * ⊤ = x; therefore, z ⊩ φ by Lemma 3.5 (i). 

(pe) We need to show that ⊤ ⊩ (φ & ψ) → (ψ & φ). By 
Lemma 3.6, it suffices to assume x ⊩ φ & ψ and show x ⊩ ψ 

& φ. To show this, using the condition (&), we may instead 
assume that Ryzx, z ⊩ ψ, and y ⊩ φ. By the suppositions and 
the postulate (pe), we have Rzyx. Then, by the condition (&), we 
further have x ⊩ ψ & φ. 

The proof for the other cases is left to the interested reader. 
□

Now, we introduce an important result between postulates for 
MTL frames and algebraic (in)equations corresponding to the 
structural axioms of MTL.

Proposition 3.8 The postulates for MTL frames introduced in 
Definition 3.1 are reducible to algebraic (in)equations 
corresponding to the structural axioms of MTL introduced in 
Definition 2.1 (see Definition 2.4).
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Proof: We consider (pl) and  (pi) as examples.
(pl) We show that this postulate corresponds to linearly 

orderedness. Using (pl) and (df5), we obtain that b ≤ a * ⊤ = 
a or a ≤ b * ⊤ = b, i.e., b ≤ a or a ≤ b.

(pi) We show that this postulate corresponds to the integral 
property, i.e., a ≤ ⊤ for any a. Using (pi) and (df5), we obtain 
that c ≤ b * a implies c ≤ b * ⊤ = b; therefore, a ≤ ⊤

since b * a ≤ b = b * ⊤. 
The proof for the other cases is left to the interested reader. 

□

By a chain, we mean a linearly ordered algebra. Note that the 
relation R can be defined as in (df5) and the postulates for MTL 
frames introduced in Definition 3.1 are reducible to their 
corresponding algebraic (in)equations (see Proposition 3.8). The 
next proposition connects algebraic Routley-Meyer semantics and 
algebraic semantics for MTL.

Proposition 3.9 (i) The {⊤, ⊥, ≤, *} reduct of an MTL 
chain A is an MTL frame, which is complete iff A is complete.
(ii) Let X = (X, ⊤, ⊥, ≤, *) be an MTL frame. Then the 

structure A = (X, ⊤, ⊥, max, min, *, →) is an MTL-algebra 
(where max and min are meant w.r.t. ≤).

(iii) Let X be the {⊤, ⊥, ≤, *} reduct of an MTL chain A, 
and let v be an evaluation in A. Let for every atomic formula 
p and for every x ∈ A, x ⊩ p iff x ≤ v(p). Then (X, ⊩) 
is an MTL model, and for every formula φ and for every x ∈
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A, we obtain that: x ⊩ φ iff x ≤ v(φ).
(iv) Let (X, ⊩) be an MTL model, and let A be the 

MTL-algebra defined as in (ii). Define for every atomic formula 
p, v(p) = max{x ∈ X : x ⊩ p}. Then for every formula φ, 
v(φ) = max{x ∈ X : x ⊩ φ}.

Proof: The proof for (i) and (ii) is easy. We prove (iii) and 
(iv). 

As regards to claim (iii), we consider the induction steps 
corresponding to the cases where φ = ψ & χ and φ = ψ → χ. 
(The proof for the other cases are trivial.)

Suppose φ = ψ & χ. By the condition (&), x ⊩ ψ & χ iff 
there are y, z ∈ X such that z ⊩ ψ, y ⊩ χ, and Ryzx, hence 
by the induction hypothesis, z ⊩ ψ and y ⊩ χ iff z ≤ v(ψ) 
and y ≤ v(χ). Then, by (df5), we further have that x ≤ z * y. 
Therefore, it holds true that x ≤ z * y ≤ v(ψ) * v(χ) = v(ψ & 
χ). Conversely, if x ≤ v(ψ) * v(χ) = v(ψ & χ), then take z = 
v(ψ) and y = v(χ). Then we have x ≤ z * y, y ⊩ ψ, and z 
⊩ χ, therefore x ⊩ ψ & χ since Ryzx := x ≤ z * y by (df5).

Suppose φ = ψ → χ. By the condition (→), x ⊩ ψ → χ 

iff for all y, z ∈ X, if Ryxz and y ⊩ ψ, then z ⊩ χ, hence 
by the induction hypothesis and (df5), iff z ≤ x * y and y ≤
v(ψ) only if z ≤ v(χ), hence iff x * v(ψ) ≤ v(χ) and thus iff 
v(ψ) * x ≤ v(χ), therefore by residuation, iff x ≤ v(ψ) → v(χ) 
= v(ψ → χ), as desired. 

For claim (iv), as in (iii), we consider the induction steps 
corresponding to the cases where φ = ψ & χ and φ = ψ → χ. 
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For this, for any formula φ, by φ○, we denote the set {x : x ⊩
φ}.

Suppose φ = ψ & χ. Let b = max(ψ○), c = max(χ○), and a 
= b * c. We show that a = max(φ○). First, we have that b ⊩
ψ, c ⊩ χ, and a ≤ b * c. Thus, because of (iii), we can 
ensure that a ⊩ ψ & χ. To show that a is a maximum element, 
let a < x. Suppose that there are y, z such that y ⊩ ψ, z ⊩ χ, 
and x ≤ y * z. We have that b * c < y * z. But, since y ⊩
ψ and z ⊩ χ, we also obtain that y ≤ b and z ≤ c; therefore, 
y * z ≤ b * c, a contradiction. Hence a ⊩ φ but x ⊮ φ.

Suppose φ = ψ → χ. Let b = max(ψ○), c = max(χ○), and a 
= sup{x : b * x ≤ c}. We show that a = max(φ○). First, we 
have that b * a ≤ c. Since for every x, x ⊩ ψ implies x ≤ b, 
we have x * a ≤ b * a ≤ c and thus x * a ⊩ χ; therefore, a 
⊩ φ. To show that a is a maximum element, let a < x. Then, b 
* x > c and thus b * x ⊮ χ. Moreover, since b ⊩ ψ, we 
further have that x ⊮ φ. □

Theorem 3.10 (Strong completeness) 
(i) MTL is strongly complete w.r.t. the class of all MTL frames.
(ii) MTL is strongly complete w.r.t. the class of complete MTL 
frames.

Proof: (i) and (ii) follow from Proposition 3.9 and Theorem 
2.9, and from Proposition 3.9 and Theorem 2.11, respectively. □
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4. Concluding remark

Here the present author investigated just algebraic 
Routley-Meyer-style semantics for some MTL. Note that the 
author provided not only algebraic but also set-theoretic 
Kripke-style semantics for fuzzy logics in Yang (2015a; 2016c, 
2017a, 2017b, 2018). This gives rise to a question to consider 
set-theoretic Routley-Meyer-style semantics for MTL. I leave this 
for another work.
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퍼지 논리 MTL을 위한 대수적 루트리-마이어형 의미론
양 은 석

이 글에서 우리는 대수적 루트리-마이어형 의미론이라고 불릴 의

미론을 연구한다. 이를 위하여 먼저 퍼지 논리 체계 MTL과 대수

적 의미론을 소개한다. 다음으로 이 체계를 위한 대수적 루트리-마
이어형 의미론을 제공한 후, 이를 대수적 의미론과 연관 짓는다.

주요어: (대수적) 루트리-마이어형 의미론, 크립키형 의미론, 대수

적 의미론, 퍼지 논리, 준구조 논리 


