• Title/Summary/Keyword: Alabama

Search Result 257, Processing Time 0.024 seconds

Variability in physical therapy protocols following total shoulder arthroplasty

  • Samuel Schick;Alex Dombrowsky;Jamal Egbaria;Kyle D. Paul;Eugene Brabston;Amit Momaya;Brent Ponce
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • Background: Physical therapy (PT) plays an important role in the recovery of function following anatomic total shoulder arthroplasty (aTSA). While several PT protocols have been published for these patients, there is no standardized protocol for aTSA rehabilitation. This lack of standardization may lead to confusion between patients and physicians, possibly resulting in suboptimal outcomes. This study examines how PT protocols provided by academic orthopedic surgery programs vary regarding therapeutic goals and activities following aTSA. Methods: PT protocols for aTSA available online from the Accreditation Council for Graduate Medical Education accredited orthopedic surgery programs were included for review. Each protocol was analyzed to evaluate it for differences in recommendation of length of immobilization, range of motion (ROM) goals, start time for and progression of therapeutic exercises, and timing for return to functional activity. Results: Of 175 accredited programs, 25 (14.2%) had protocols publicly available, programs (92%) recommended sling immobilization outside of therapy for an average of 4.4±2.0 weeks. Most protocols gave recommendations on starting active forward flexion (24 protocols, range 1-7 weeks), external rotation (22 protocols, range 1-7 weeks), and internal rotation (18 protocols, range 4-7 weeks). Full passive ROM was recommended at 10.8±5.7 weeks, and active ROM was 13.3±3.9 weeks, on average. ROM goals were inconsistent among protocols, with significant variations in recommended ROM and resistance exercise start times. Only 13 protocols (52%) gave recommendations on resuming recreational activities (mean, 17.4±4.4 weeks). Conclusions: Publicly available PT protocols for aTSA rehabilitation are highly variable. Level of evidence: IV.

Modified Digital Pulse Width Modulator for Power Converters with a Reduced Modulation Delay

  • Qahouq, Jaber Abu;Arikatla, Varaprasad;Arunachalam, Thanukamalam
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • This paper presents a digital pulse width modulator (DPWM) with a reduced digital modulation delay (a transport delay of the modulator) during the transient response of power converters. During the transient response operation of a power converter, as a result of dynamic variations such as load step-up or step-down, the closed loop controller will continuously adjust the duty cycle in order to regulate the output voltage. The larger the modulation delays, the larger the undesired output voltage deviation from the reference point. The three conventional DPWM techniques exhibit significant leading-edge and/or trailing-edge modulation delays. The DPWM technique proposed in this paper, which results in modulation delay reductions, is discussed, experimentally tested and compared with conventional modulation techniques.

Characterization of high performance CNT-based TSV for high-frequency RF applications

  • Kannan, Sukeshwar;Kim, Bruce;Gupta, Anurag;Noh, Seok-Ho;Li, Li
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • In this paper, we present modeling and characterization of CNT-based TSVs to be used in high-frequency RF applications. We have developed an integrated model of CNT-based TSVs by incorporating the quantum confinement effects of CNTs with the kinetic inductance phenomenon at high frequencies. Substrate parasitics have been appropriately modeled as a monolithic microwave capacitor with the resonant line technique using a two-polynomial equation. Different parametric variations in the model have been outlined as case studies. Furthermore, electrical performance and signal integrity analysis on different cases have been used to determine the optimized configuration for CNT-based TSVs for high frequency RF applications.

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF

Magnetic Parameters for Ultra-high Frequency (UHF) Ferrite Circulator Design

  • Lee, Jaejin;Hong, Yang-Ki;Yun, Changhan;Lee, Woncheol;Park, Jihoon;Choi, Byoung-Chul
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.399-403
    • /
    • 2014
  • We designed an ultra-high frequency (UHF: 300MHz to 3 GHz) ferrite circulator to investigate magnetic parameters, which are suitable for a self-biased GHz circulator design. The size of the ferrite disk was 1.58 mm in thickness and 13.5 mm in diameter. The saturation magnetization ($4{\pi}M_s$) of 3900 Gauss, internal magnetic field ($H_{in}$) of 1 kOe, and ferromagnetic linewidth (${\Delta}H$) of 354 Oe were used in circulator performance simulation. The simulation results show the isolation of 36.4 dB and insertion loss of 2.76 dB at 2.6 GHz and were compared to measured results. A Ni-Zn ferrite circulator was fabricated based on the above design parameters. An out-of-plane DC magnetic field ($H_0$) of 4.8 kOe was applied to the fabricated circulator to measure isolation, insertion loss, and bandwidth. Experimental magnetic parameters for the ferrite were $H_{in}$ of about 1.33 kOe and $4{\pi}M_s$ of 3935 Gauss. The isolation 43.9 dB and insertion loss of 5.6 dB measured at 2.5 GHz are in close agreement with the simulated results of the designed ferrite circulator. Based on the simulated and experimental results, we demonstrate that the following magnetic parameters are suitable for 2 GHz self-biased circulator design: $4{\pi}M_r$ of 3900 Gauss, $H_a$ of 4.5 kOe, $H_c$ greater than 3.4 kOe, and ${\Delta}H$ of 50 Oe.