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PARTIALLY ORDERED SETS AND GROUPOIDS
By J. Neggers

Let (S, <) and (T, <) be partially ordered sets (posets). Then a function
f:S—T is regular order preserving if it is order preserving and if the image of
any two incomparable elements is either a singleton or a pair of incomparable
elements. The composition of regular order preserving functions is a regular
order preserving function. Hence the collection of posets and regular order
preserving functions is a category.

Now, let S be a groupoid, i.e., a set with a binary operation, denoted in the
usual fashion (x,y)—xy. Suppcse that this binary operation satisfies the following
conditions:

1. zy& {x,9} for all x,yE S

2. x(yx)=yx for all x,yE S

3. (xy)(yz)=(xy)z for all x,y, z & S.

We shall call such groupoids pogroupoids.

As usual, if S and T are groupoids, then a homomorphism from S to T is a
mapping f: S—T such that f(xy)=f(x)f(y). It tollows that the class of

pogroupolds and homomorphism is a category.

In this paper we prove the following theorem:

THEOREM. There ts a natural (functorial) isomorphism belween the category of
pogroupoids (and homomorphisms) and the category of posets (and regular order
preserving functions).

The advantage of the theorem is that we may in this way consider posets as
algebraic objects, viz., pogroupoids and so presumably describe some properties of
posets as algebraic properties of pogroupoids. Thus (S, <<) is a totally ordered set
if and only if its associated pogroupoid is commutative. Similarly if (S,<) is a
poset such that incomparability is transitive, then its associated pogroupoid is
associative and conversely. We use this characterization to show that if S is
an associative pogroupoid then (S, <) is an ordinal sum of posets (S, <) where
(S, <) is a set S; along with the diagonal relation. Also, if (S, <C) is of the latter

type, then its associated pogroupoid is associative. As another example we show
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that if S is a pogroupoid such that x(yz)=y(xz) for all x,y,zE S, then S is a
poset such that the set of upper bounds of a subset A of S in (S,<<) is a chain
or the empty set. A method for generating results is discussed.

It we consider those groupoids S satisfying the conditions 2 and 3 for pogroupoids
as well as the idempotent identity x2=x, then we obtain a class of groupoids
which is closed under the direct product SXT defined by taking SXT to have the
underlying set SXT and an operation (s,£)-(s’,¢)=(ss",#’). The class of
pogroupoids is not closed under this natural direct product. It follows easily that
the class of pogroupoids cannot be defined by means of identities of the type
w(xy, -'-,xﬂ)=v(x1, -, x,), Where the latter expressions are words in the variables

%, »%. This points out the nonalgebraic nature of condition 1, and thus

1
presumably the limitations of this approach in reducing the class of posets to a
category of groupoids specified by equations.

If we consider the class of groupoids satisfying conditions 2 and 3 as well as
the idempotent identity, then we may associate with each such groupoid a
partially ordered set in the manner of the theorem. 'This allows us to construct
a direct product S-T of pogroupoids S and T which is again a pogroupoid and
which corresponds by the theorem to the product of posets. This product Las
many of the standard properties of direct products. Some properties are
preserved, such as connectedness, the lattice property, etcetera. Identities of the
type w(xy, -+, x,)=v(xq, -+, x,) are in general not preserved unless they hold for
the class of all posets. Hence the properties which are preserved and which do
not hold for the class of all posets cannot be defined by the addition of identities
to the identities 2,3 and the idempotent identity. In conclusion then, the method
works quite well as far as it goes. For further refinements one might begin by
considering sets with two binary operations such as is done in the case of lattices

for example.

PROOF. Suppose that S is a pogroupoid. Then define an order relation << on S
according to the rule: y<zx if and only if xy=ux.
We claim that (S,<C) is a poset. Since xx=x, it follows that x<<x. Suppose that
x <<y and y<zx. Then xy=x and yx=y. Hence, x=xy=x(yx)=yx=9 by condition 2.

Finally, suppose that x <y and y<<z. Then yx=y and zy=2z. It follows that
z=zy=(zy)(yx)=(2y)x=2zx by condition 3, i.e., x<z. Hence (S, <) is a poset as
claimed.

Now suppose that (S, <) is a poset. Then we define a binary operation on S
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according to the rule xy=x if y<<x and xy=y otherwise.

We assert that the resulting groupoid is in fact a pogroupoid. Condition 1 is

obviously satisfied.
T'o check condition 2 we consider three cases, viz., <<y, y<x and (x,y),

where we denote the fact that x and y are not comparable by the sumbol (x, y).

Thus, if x<y, x(yx)=xy=y, ya=y. If y<zx, x(yx)=xx=x and yx=x. Finally,

if (x,v), then x(yx)=xx=x and yx=x. Hence condition 2 Is also satisfied.

T'o verify condition 3 we consider nineteen cases, listed below. We shall perform

the required computations as we list each case.

(D <y,
(2) x<3y,
(3 <y,
(4) 23,
(3) y<nx,
6) 2<y,
(7)) 2y,
8) y<x,
(9) z<x,
(10) y <z,
(1D x <y,
(12) x <z,
(13) <y,
(14) y <z,
(15) y <z,
(16) z <y,
(17) z< x,
(18) x < 2z,
(19) (=, 3),

(%, 2),
(%, 2),
(x,3),
(%, 5),
(x,3),
(x, 3),
(%, 2),

(¥, 2):
(%, 2):
(x,2):
(¥, 2):
(3, 2):
(3, 2):

() (yz)=yy=y, (xy)z=yz=y;
(xy)(yz)=(xy)z; |
(xp)(y2)=yy=y, (xy)z=yz=y;
(xy)(yz)=yy=y, (xy)z=yz=y;
(xy)( y2) =(xy)z;
(xy)(yz2)=xy=2x, (xy)z=2x2=2x;
(xy)(y2)=(xy)z;
(xy)(yz)=(xy)z;
(xy)(yz)=yy=y, (xy)z=yz=y;
(xy)(yz) =(xy)z;

() (yz)=yy=y, (XY)z=3z2=y;
(xy)(y2)=(xy)z;
(xy)(yz)=(xy)z;
(xy)(y2)=(xy)z;
(xy)(yz)=(xy)z:
(xy)(yz)=yy=y, (xy)z=yz=y;
(xy)(y2)=(xy)z;
(xy)(y2)=(xy)z;
(xy)(y2)=(xy)z.

Hence it follows that condition 3 is indeed satisfied and the groupoid S defined

above is in fact a pogroupoid.

Now suppose f: S—T is a homomorphism of pogroupoids, i.e., f(xy)=F(x)f(¥).
Then, if we consider the corresponding posets (S,<<) and (T, <) it follows that

f is a regular order preserving function. -.
Indeed, if y <<z, t.en xy=x, whence f(xy)=f(x)f(y)=f(x), i.e., f(y) <f(x).
Also, if the situation (x,y) holds then xy=y and yx=x, so that f(x)f(y)=r(y)
and F(v)f(x)=f(x), so that we either have f(x)=f(y) or (f(x), F(¥)).
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Conversely, if f is a regular order preserving function from the poset(S, <) to the
poset (7, <<) and if S and T are the associated pogroupoids, then f(xy)=r(x) f(3),
i.e., f: S—T is a homomorphism.

Indeed, if y <=z, then f(y) <f(x), and thus f(x)f(W=f(x)=f(xy). If (x,3),
then f(x)=F(y) or (f(x), f(»)) whence f(x)f(y)=f(y)=f(xy).

The required functorial isomorphism is now the obvious one: F((S, <))=S,
G(S)=(S, <), F(f)=f, G(f)=f. The proof of theorem 1 is now complete.

Some preperties of pogroupoids

In this section we prove a few propositions connecting properties of pogroupoids
with properties of posets.

PROPOSITION 1. 4 poset (S, <) 7s totally ordered if and only if ils associated
pogroupoid S is commutalive.

PROOF. Suppose that x,y&€ S. Then xy=yx &E {x,y}, whence x <y or y <z,

Le., (5 <) is totally ordered. If (S, <) is totally ordered, then x,y &S implies
¥ <<y or y<<x and hence In any case xy=yx.

PROPOSITION 2. Suppose that S is a groupoid such that xy=yx, x(yx)=yx and
(xy)(yz)=(xy)z. Then also (xy)z=x( yz).

PROO<7. Let x,3,z2€ S, then (xy)z=(xy)(y2)=x)(zy)=C(2y)(yx)=zy)x=2x(2y)
=~x(yz), and the proposition follows.

COROLLARY. If S is a commutative pogroupoid then S is associative.

PROPOSITION 3. A poset (S, <) has the property that for x, y aend 2z, (x, v),

(y, z) tmplies x=z or (x,2), if and only if its associated pogroupoid s associative.

PROOF. Assume that (S, <) is a poset such that incomparability is transitive.
We take x,y and z elements of S and we consider the expression x(yz). There

are three possibilities, viz., x(yz2)=x, x(yz2)=y», x(yz)=z., If x(yz)=x then
yz2<x. If yz=y9, then 2<<y<x, whence(ay)z=x. If y<<z, then y<<z<yx and
(xy)z=2x2. I (,2), then x(yz)=xz=2x, whence z<x and so (x,y) is impossible
since then (x, 2) by transitivity of incomparability. If 2 <<y, then z<<x contradicts
(y, 2). Hence y<zx and (xy)z=xz=x(y2)=1.

It x(y2)=y, then yz=y and xy=y, it follows that (xy)z=y, i.e., x(yz)=(_xy)z.

If x(yz) =2, then yz=z and xz=2. If y<z and x<z then (xy)z=z=zx(y2).
Also, if (x,2) and (y,2), then (x,y) whence (xy)z=z=x(yz). The remaining
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cases are y<<z and (x,2) or (¥,2) and x<<z. We have respectively (xy)z=xz2=z
or (xy)z=yz=z in the first case and (xy)z=xz=2z or (xy)z=yz=z in the second
case. |

Hence it follows that S is an associative pogroupoid.

On the other hand, assume that x( y2)=(xy)z for all x,y,z& S. Suppose that
(x,y) and (3, 2). Hence (ay)z=y2=2z and x(yz)=x2=2z. Thus, we cannot have
z2<=x. Also, (zy)x=yx=x and z(yx)=zx=x, sO that we cannot have x < z. It
follows that (x,2), i.e., incomparability is a transitive relation. The proposition
follows.

Typically, if the poset (S, <) is not connected, then we can decompose (S, <)
into the disjoint union of two posets S=AU B, AN B=¢, with xE A4, y& B
implying (x,y). Thus, suppose y,z& B. If S is an associative pogroupoid, then
(x,3), (z,x) implies (2,y), whence B is a union of points. Similarly A is a
union of points. Thus (S,<<) is a union of points, i.e., (x,9) if x#y. The
associated pogroupoid is the right semigroup with multiplication xy=y.

COROLLARY. If S #s an associative pogroupoid which is not the right semigroup,
then (S, <) is a connected poset.

Connectedness

Suppose S is any groupoid whatsoever. Then a subset A of S is connected in a
subset B of S, ¥ given any x,y &€ A, thereis a finite subset {ey,-:,@,} of B such
that:

xa=ax, g, =a;, @, t=1,-,k—1, ya,=ay.

A subset A of S is connected if it is connected in itself.

PROPOSITION 4. If f:S—T is a homomorphism of groupoids and if ACS is
connected in BC S, then f(A) CT is connected in f(B) CT.

PROOF. The proof is a trivial consequence of the fact that if xy=yx In S, then
FOf(»=r()f(x) inT.

COROLLARY. The homomorphic image of a connected groupoid is itself connected.
PROOF. Take A=PB=S and f(S)=T, the conclusion follows.

PROPOSITION 5. The poset (S,<<) is comnected if and only if its associated
pogroupoid s connected.

PROOF. If (S, <), then we define a relation ~ on S by saying x~y provided
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there exists a finite subset {@,+-,a@,} of S such that the following statements
are simultaneously false:
(x,a)), (@,a;, ), i=1,,k=1, (a,3).

This is an equivalence relation which partitions S into subsets which we shall
call the components of S. Clearly, if A and B are different components of S,
then x & A and y & B implies (x,y). Indeed, if it is false that (x,y), then taking
a,=y, it follows that the following statements are simultaneously false:

(x,y), (v,9v). Hence x~y, i.e., 2 and y are elements of the same component.

Now, in terms of pogroupoids the fact that (x,y) is false, is equivalent to
saying xy=yx. The proof of the proposition is now immediate.

COROLLARY. If S is an associative pogroupoid which ts not the right semigroup,
then S is connecled.

A direct proof of this corollary, i.e., one that does not make wuse of the

machinery alreadv developed and which relies only on the established identities
does not seem excessively easy.

LEMMA. If S 7s an assoctative pogroupoid, them xy #yx, xz27# z2x and y =2
implies yz #£ 2.

PROOF. If xy##yx, then xy=y and yxr=x. Indeed, if xy=x, then yx=p» and y=

yx=x(yx)=xy=2x, whence xy=yx. Now, if xy#yx, xz7zx, then (yx)z=zxz=z
y(xz)=vz and y=xy=(x2)y=2z(xy)=2zy. The lemma follows.

PROPOSITION 6. If S is a comnnected associalive pogroupoid, them given any
elements x and y there is an element z such that xz2—=zx and yz=2zy.

PROOF. Suppose x and y are elements for which no element z with the required
properties exists. Let {a, ‘-, a,} be a minimal set of elements connecting x and

y. Then, without loss of generality we may take 2=2 by identifying y with a,
if necessary. Thus, zxa,=ax, @a,=a,a,, a,y=yas It follows that xe, # a,x and
xy # yx, whence by the lemma a,y # ya, or a,=y. But then ¢,=y, and ¢;=z is
the required element.

Now suppose that S is a connected and associative pogroupoid. We let x~vy if
either x=y or (x,y). It follows that ~ is an equivalence relation, which

decomposes S into a set of equivalence classes which we shall denote by [x} = {y

x~9}.
PROPOSITION 7. If S is a connected and associative pogroupoid, let S/~ denote
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the family of equivalence classes (x]. Then, S/~ becomes a commutative pogroupoid
with the oteration defined by [x] [y] = [xy].

PROOE. To show that tie operation i1s well-defined we need to show that if

x~x" and y~y’, then also xy~x"y’. If x=x",y=y", the situation is trivial.
If x=x" and (y,y"), suppose that xy~x"y"=xy’. Then, either xy < xy” or xy’ < xy.
Hence in the first case (x9)(xy")=({y)(xy)=xy. From the associative law and
condition 2 we find that (yx)y"'=xy" and y"(xy) =xy’. But then ¥y < zxy or xy <y".
Siace (9,5"), we have in either case xy=x, i.e., y<<x, and thus since (v, y"),
y<xor (,x). If y¥y<zx then xy=2"9"=x and xy=x so that xy=x"y". If xy" <
xy, the same argument holds provided we interchange y and y’. Since xy=x'y =
xy” we reach a contradication and xy~zx"y’.

If (x,2°) and y=3’, suppose that xy=x"y’=x"y. Then, xy<<z’yor z’y<=xy. In
the second case (xy)(x’y)=({x"y)(xy)=xy. We find that by the associative law and
condition 2, (xx)y=xy and (¥’x)y=zxy. Thus, since (x,x2") we have zx’y=xy,
whence xy~x"y. The first case is similar. Since we assumed xy=<x"y” we reach a
contradiction and xy~=x"y’.

If (x,27) and (9,9"), then x <<y implies ¥ <y or y<x’, and thus " <y. We
have xy=y, x’y=yx’=yp, and ¥’y =x(yy)=&"y)y =yy =y so that (xy,27y).

Similarly for 27 <y, 2y, y<zx, y<2a, vV <zx ¥y <z, with the appropriate
interchange of symbols. The case remaining is that where also (x,y), (x,%"),
(x,y) and («/,y"). But then zy=y, 2’y"=»" and (xy, 2’y") as well. Hence ~ is
indeed well defined and S/~ becomes a pogroupoid immediately.

To show commutativity we must show that xy~yzx, i.e., xy=yx or (xy, yx).

Now, if x<y, then xy=yx=y while if y <zx, then xy=yx=2x, so that xy ~ yx.

If (x,v), then xy=y and yx=x so that (xy, yx), which means that xy ~ yx as
asserted. The proposition follows.

Of course, in the light of proposition 1 this means that (S/~, <) is a totally
ordered set. Now, if [x]<[y], then o € [x] and S & [y] yield [aB] = [xy] = [¥],
so that aB8~B, whence =8 or (aB,B8). Now, (apB,B) implies (a¢B)B=aB=}.
Since presumably a87#8, we have a contradiction, i.e., the case (a8, 3) does

not occur.

"~ Since we also have Ba~pB, we must have Ba=8 or (Ba,B). Now (Ba, B)
implies (Ba)B=pF and B(Ba)=pLa. Suppose Ba # B. Then LBa=a. Now by the

equivalence Ba~apB we find that o« ~ 3, and hence x ~y, i.e., [x]=1[y]. Thus,

if [x] # [y], we must have af=La=4, i.e., a < B
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Finally, the equivalence classes [x] are themselves pogroupoids which are also
associative. Since o, 3E€ [x] implies a=8 or («, ), it follows that [x] itself is
the right semigroup and that [x] as a poset consists of loose points. Proposition 7
thus has the following.

COROLLARY. S is an associative pogroupoid if and only if (S, <) is an ordinal
sum of posets (S,;,<), i<I, such that each poset (Sz., <) #s a collection of loose
points, i.e., a sel along with the diagonal relation.

The converse is quite immediate, i.e., if (S,<) i1s an ordinal sum of posets

(S,;,=), i€l, such that each poset (S;,<C) is a collection of loose points, then if
(x,y) and (9, 2), it follows that #,y,z & S, for the same index 7z € I, and thus if

x % z, then (x,2). Hence we have

COROLLARY 2. (S,<) 7s a poset such that for x,y and z (x,v) and (y,z) tmplies
x=z or (x,2z), if and only if (S, <) is an ordina’ sum of posets (S, <), 1 €1,
such that each poset (S,, <) is a colleciion of loose points, i.e., a sei along with
the diagonal relation.

Other laws

We have looked at the effect of associativity and commutativity. In this section

we consider several other laws.

PROPOSITION 8. Every pogroupoid S is a flexible groupoid, i.e., (xy)x=x(yx)
for all x,y & S.

PROOF. Since x(yx)=yx, the flexible law becomes equivalent to the statement

(xy)x=yx. Now, 1f xy=x, then y<x and hence yx=x as well. Hence (xy)x=x
yr. If xy=y, then (xy)x=yx also.

COROLLARY. If S is a pogroupoid, then in its associated poset (S, <) it 1s true
that xy=yx or (xy, yx).

PROOF. Since (xy)(yx)=(xy)x=yx and (yx)(xy)=(yx)y=xy the conclusion follows.

PROPOSITION 9. Every pogroupoid S is an allernative groupoid i.e., (xx)y=x(xy)
and (yx)x=y(xx) for all x,y E S.

PROOF. Since xzzx, we need to show that xy=x(xy) and yx=({yx)x. If xy=x,

then xy=x xz'—*:c(xy) and 1f xy=y, then xy=y=xy=x(xy). Similarly, if yx=x,

then yxr=x x2=(y:r):a:, while if yx=1y, then yx=y=(_yx)x.
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The class of groupoids S satisfying the following conditions 1: ¥ =1
2:(xy)x=x(yx); 3: (xx)y=x(xy); 4: y(xx)=Cyx)x; 5: x(yx)=yx; 6: (x9)(y2)=(xy)
z, comes relatively close to describing the class of pogroupoids. They are not the

same class however. To see this is actually quite easy. In fact, if we let w(x, -
,x,) be any word in the variables, x,, -, % , where variables may be absent, and
where a word consists of a sequence of variables and parentheses so that for

particular values in the groupoid S the expression is always defined, then a

typical identity for a groupoid has the form
w(xy, 2, ) =0(x 0, %,).
Clearly, if I is a set of identities satisfied by groupoids S and T, then if we

define SXT by taking the product componentwise, i.e., (s,0)-(s",¢)=(ss", ),
then SXT satisfies the same set of identities.

Thus, if the pogroupoids were definable by a set of identities I, finite or
infinite of whatever cardinality, then given pogroupoids S and 7, the direct
product SX7T should also be a pogroupoid.

Consider the pogroupoid S corresponding to the two point poset S= {e, b} with
@<b. Then S has the table a°=a, ab=ba=b"=p. In particular, in SXT we find

that (a,b)-(b,a)=(4,b), whence condition 1 in the definition of pogroupoids is
violated. Thus, the class of pogroupoids is not closed under this typs of direct
product. Later on we shall see that this problem can be adjusted. However we
do have the followinz conclusion.

PROPOSITION 10. The class of pogroupoids cannot be equationally defined.

For examples demonstrating the independence of the conditions 1,2 and 3 in the
definition of pogroupoid we note the following.

Condition 1 is not a consequence of conditions 2 and 3, since then the class of
pogroupoids would be equationally defined.

Condition 2 is not a consequence of conditions 1 and 3. Indeed, let X be the
left semigroup on at least two elements, xy=x. Then 1 and 3 are trivially
satisfied, while if x#y, then x(yx)#yx.

Also condition 3 is not a consequence of conditions 1 and 2. l.et X=/{a, b, ¢} be
the groupoid with multiplication table:

[

a b ¢
ala a ¢
b |la b b
clcbc
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then one checks easily that e(ba)=ba, a(ca)=ca, b(ab)=ab, b(ch)=ch, c(ac)=ac,
c(bc)=bc, (ab)(bc) # (ab)c and xy & {x,y} for all xz.y = S.

There is a sort of standard technique in isolating which posets satisfy a given
identity. We give an example using only three variables x,y and z. The law we
will consider is x(yz)=y(xz). For reference we will use the nineteen cases in the
proof of theorem 1.

(D x(yz)=xy=y, y(x2)=yx=y; (2) 2(yz)=xz=2, y(x2)=yz=az;
(3) x(yz)=xy=y, y(xz)=yz=y: (D x(yz)=xy=y, y(xz)=yx=y;
(5) x(yz)=2x22=2, y(xz)=yz=2; (6) x(y2)=xy=2x, y(xz2)=yxr=x;
(1) x(yz2)=xz=2, y(xz)=yz2=2; (8) x(yz)=x2=2, y(x2)=yz=2z;
(9) x(yz)=zxy=y, y(xz)=yx=x; (not equal) (10) x(yz)=xz2=x, y(x2)=yx=x;
(1) x(yz)=xy=y, y(xz2)=yz=y; (12) x(yz)=xz=2, y(xz)=yz=2;
(13) x(yz)=zz2=2z2, y(xz)=yz=2; (14) x(yz)=xz=2z, y(xz2)=yz=2z;
(15) x(yz)=xz=2, y(xz)=y2=2; (16) x(y2)=xy=y, y(xz)=yz=y;
(17) x(yz)=xz=x, y(x2)=yx=2x%; (18) x(yz2)=xz=2z, y(xz)=9yz=2;

(19) z(yz)=zxz=2, y(xz)=yz2=2.

Reading down the list we find that the only situation where equality fails to
hold is the case where z<<x, 2<y and (x,y). This means simply that the poset
cannot have a subset of the type {x,y,z} with 2<%, 2<y and (x,y). Another
way of saying this is that if x and y have a lower bound, then x or y is a lower

bound for {x, y}.

PROPOSITION 11. A pogroupoid S satisfies the condition x(yz)=y(xz) for all
x, V, 2ES if and only if it is true that if x and y are elements with a lower bound,
then x-or y is a lower bound for {x,y}.

PROPOSITION 12. If S is a comnected pogroupoid such that x(yz)=y(xz), then
in (S, <) any two elements have an upper bound.

PROOF. If <y or y<x, there is no problem. Suppose that we consider a
smallest set {e,,@,} connecting x and y. Suppose £#=>3. Then, we have a set

{x,a,, a5 as}, where (x,a,), since otherwise we would be ablé to eliminate a,
from this smallest set. Now, a, cannot be a lower bound of x and @, so that it

must be an upper bound. But this implies that e, is a lower bound of ({g;,a.}
with (@;, @3), a manifest impossibility. Thus £<<2. If 2=2, then if y replaces a,

we have another contradiction. Thus £=1, and x and y have an upper bound.
Given a subset A of a pogroupoid S, let U(A)={z|zx=xz=2z for all x € A}.
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Thus U(A) is the set of upper bounds of A in (S, <).

PROPOSITION 13. Suppose ihat S is a pogroupoid such that x(yz)=y(xz). Thex

for ACS, either U(A)=¢ or U(A) is a commutative pogroupoid. The converse is
also true.

PROOF. Suppose z,w EU(A), x& A. Then z(wx)=w(zx)=zw=wz. Since U(A)
is itself a pogroupoid, the conclusion follows. Conversely, suppose that x(yz)#
y(xz) for some choice of %,y and 2. Then, we must be working in case (9), i.e.,

2<% 2<yand (x,y). Now, {x, 3 CU(2), and thus U(z) is not a commutative
pogroupoid.

Thus, the law x( yz)=y(xz) identifies those posets (S, <) such that the set of
upper bounds U(A) of a given subset A is either empty or totally ordered.

Direct products of pogroupoids

Suppose that S and T are pogroupoids, then as we saw already, the direct

product SX7T of S and T is not in general a pogroupoid. We can however define
a convenient direct preduct, which we shall denote by S-T.

Construetion of S-T via posets

If (§,<) and (7,<), then the product of these posets is defined by taking
the set SX7T and on it defining the partial order (s,#) < (s,¢) if and only if
s<s and t <.

This yields a poset which we shall denote by (S, <)« (T, <). The poset
(S, <)«(T,<) in its turn determines a pogroupoid which we shall denote by S-T.

More generally, if {((S_,<) a&n} is a family of posets, then we can define a

poset (S, <)=T1__ (S,, <) in essentially the same fashion.

Construetion of S-T via groupoids

The pogroupoids are among the groupoids S satisfying the three conditions
2
1:x'=x; 2: 2(yx)=9yx and 3: (xy)(y2)=(xy)z.

Since the defining conditions are words, it is clear that the direct product of

elements in this class is again in this class. We shall refer to groupoids of this
type as weakly ordered groupoids or wogroupoids for purposes of abbreviation.
Suppose now that S is a wogroupoid. Then we define a relation < on S by
letting y <« if and only if xy=x. Since % =z, it follows -that x<x. Also, if
xr<yand y<zx then x=xy=x(yx)=yx=y. Finally, if <<y and y<<z, then
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z=(z2y)(yx)=(2y)x=zx, whence ¥ <<z. Hence (S, <) is a poset. Define G*(S)=
(S, <.

If S and T are wogroupoids, and if f: S—»T is a homomorphism then xy==x

implies f(x)f(y)=f(x), and thus the mapping f: (S,<)—(T,<) 1is order
I preserving. Now, if (x,y) in (S, <), then xy7#x. This does not guarantee that
f(xy) # f(x), and so it is no longer true that f: (S, <)—(T,<) is a regular
order preserving function. If we let G*(f)=f, then we do get a contravariant

functor from the category of wogroupoids and homomorphisms to the category of
posets and order preserving maps.

PROPOSITION 14. If S and T are wogroupoids, ther
G*(SXT)=G*(S)-G*(T).

PROOF. It is clear that in both cases the underlying sets are precisely the
same, l.e., SXT.

Now, let (s, < (¢,) in G*(S)-G*(T), then s<s and t<?, ie., s's=¢,
Vt=t. Hence (s,¢)(s,)=(s"s,'t)=(s",¥) so that (s,H) < (s",¢¥) in G*(SXT).
On the other hand, if (5, < (s,¢) in G*¥(SXT), then (s, ¢)(s8, ) =(s",¢)=(s"s,
Y1), so that s's=¢’, Vt=¢ and (s,t) < (s, ¢t) in G*(S)-G*(T).

Thus, in terms of the functors G* and F (from theorem 1), we have ST =
FG*(SXT)=F(G*(S)-G*(T)) defined for wogroupoids, since FG* is a covariant
functor from the category of wogroupoids and homomorphisms to the category of
pogroupoids and homomorphisms.

Suppose that S is the pogroupoid corresponding to the two point poset S= {a, b}
with a < 5. Then S has table czz=a:, ab=ba=b"=b. The table for S-S can be

constructed by observing that G*(SXS) is the poset with Hasse diagram:
(5, 5)
AN
(br G) @, O(d, b)
N

(a,a)
Thus, we have the table:

SeS (a,a) (a,b) (b,a) (b,0b)

(a, a) (a,a) (a,b) (b,a) (bb)
(a, b) (a,b) (a,b) (b,a)* (b,b)
(b, @) (b,a) (a,b)* (b,a) (b,b)
(b, b) b,8) (b)) B0 (b6
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On the other hand, SXxS has the table:

[

SXS (a,c) (a,b) (b,a) (4,0

(a,a) (a,a) (a,b) (b,a) (0,0
(a,b) (a,b) (a,b) (G,b)* (b,b)
(b, a) (b,a) (b,0)* (b,a) (b,b)
(5, 0) 4,5 G, G0 G b)

The effect of FG* on SXS has thus been to adjust the positions in the table
marked with an asterisk.

The product ST of wogroupoids has the standard properties. Thus, if S and
T are wogroupoids and f: S—7 is an isomorphism, then G*(f): (S, <)—(T, <)
is an isomorphism of posets and thus FG*(f): F(S, <)—F(T, <) is an isomorphism
of pogroupoids. As a matter of fact, on the underlying sets the mappings remain
unchanged. Hence, since SXT7T and T'XS are isomorphic by F(s,{)=(,s), S-T
and 7T+S are isomorphic by the same map. Since (SXT)XU and SX(T'XU) are
isomorphic by f((s, £),#)=(s, (¢, n)), (S§:T)-U and S-(T-U) are isomorphic by the
same map.

The mappings SXT—S and SXT—T given by projection on the components
are homomorphisms, and thus induce the projection homomorphisms S-7—S and
S-T-T.

If we consider only wogroupoids with an element e such that ex=xe=2x for all
x&S, Le., we adjoin a universal Iower bound, then considering only homomor-
phisms f: S—T such that f(e)=e, products SXT have the following universal
property. Suppose that U is a wogroupoid, and suppose that we have homomor-
phisms f: S—U, f:U—-S, g: T—-U, g’: U-T such that g'f(S)=e, fo(T)=e,
ff:S—S and g’g: T—T are identity maps. Define 2: U—-SXT by 2(U)=(F"(u),
g’ (x)). Then % is quite clearly a homomorphism. Given (s, H)ESXT, let u=
f(s)g(®). Then f'(u)=se=s, g’'(u)=et=t and thus h(x)=(s,#), whence % is a
surjection. The same wuniversal property then holds for products ST of
pogroupoids.

Although the product ST preserves many common properties of S and T such as
connectedness (the product of connected posets is connected), the lattice property

(e, DV )=V u yVov), xy»V wv)=(& Vu yV v)), the property of
being a product of chains, etcetera, other properties are lost. Among these are

commutativity, associativity and the property that the set of upper bounds of a

subset is empty or a chain. The three properties we’ve cited are precisely those
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given by algebraic identities, viz., xy=yx, x(y2)=(x3y)z and x(yz)=y(xz). Other
identities are preserved, e.g., properties 2 and 3 themselves, %=z, the flexible

property (xy)x=x(yx). and the alternative properties (xx)y=x(xy), (yx)x=y(xx).

PROPOSITION 15. Suppose that w(x,y,z)=v(x,¥, 2) ts an identity in three variables
which holds for chains and which is preserved wunder products. Then this identity

holds for posets in general.

PROOF. Here we mean that the identity is to be applied to the associated
pogroupoids of course. We observe that since the identity holds for chains with

three elements, it also holds for posets of the type whose Hasse diagram is drawn
below :

The nineteen cases are included in this diagram as an inspection will demonstrate
quite readily. Since the identity must hold in each of the nineteen cases, it must
hold in general.

~ In particular then on pogroupoids it must be a consequence of the properties
defining pogroupoids. Without going into detail, it seems clear that one can prove
a proposition equivalent to proposition 14 for identities involving an arbitrary

finite number of variables which hold for chains and which are preserved under
products.

The University of Alabama
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