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PARTIALLY ORDERED SETS AND GROUPOIDS 

By]. Neggers 

Let (S, 드) and (T, 三) be partialIy ordered sets (posets). Then a function 

f:S• T is regμlar order preservz"ng if it is order preserving and if the image of 

any two incomparable elements is either a singleton or a pair of incomparable 

elements. The composition of regular order preserving functions is a regular 

order preserving function. Hence the collection of posets and regular order 
preserving functions is a category. 

Now, let S be a groupoid, i. e. , a set with a binary operation, denoted in the 

usual fashion (x,y)• xy. Suppose that this binary operation satisfies the folIowing 

conditions: 

1. xy E {x,y} for all x,y ε S 

2. x( yx) =yx for all x, y ε S 

3. (xy)(yz)=(xy)z for a lI x,y , z ε S. 

We shall calI such groupoids pogrozφoz"ds. 

As usual, if S and T are groupoids, then a homomorphism from S to T is a 
mapping f: S• T such that f(xy) = f(x)f( y). It folIows that the class of 

pogroupoids and homomorphism is a category. 

In this paper we prove the folIowing theorem: 

THEOREM. There z's a natural (functorz"al) z"soηwrphz"sm between the category of 

pogro때oz"ds (and homomorphz"sms) and the category of posets (and regular order 

preserνz'1zg func#ons). 

The advantage of the theorem is that we may in this way consider posets as 

algebraic objects, viz. , pogroupoids and so presumably describe some properties of 

posets as algebraic properties of pogroupoids. Thus (S, 드) is a totalIy ordered set 

if and only if its associated pogroupoid is commutative. Similarly if (S, <) is a 

poset such that incomparabi1ity is transitive, then its associated pogroupoid is 

associative and conversely. We use this characterization to show that if S is 

an associative pogroupoid then (S, 드) is an ordinal sum of posets (한， 드) where 

(SZ’ 드) is a set Si along with the diagonal relation. AIso, if (S , 드) is of the latter 

type, then its associated pogroupoid is associative. As another eX쁘FpIe we show 
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that if 5 is a pogroupoid such that x(yz)=y(xz) for all x,y , z ε 5 , then S is a 

poset such that the set of upper bounds of a subset A of 5 in (5, 드) is a chain 

or the empty set. A method for generating results is discussed. 

If we consider those groupoids 5 satisfying the conditions 2 and 3 for pogroupoids 
2 as weIl as the idempotent identity x~=x， then we obtain a cIass of groupoids 

which is cIosed under the direct product 5XT defined by taking 5XT to have the 

underIying set 5XT and an operation (s , t). (s' , n = (ss' ， κ). The cIass of 

pogroupoids is not cIosed under this natural direct product. It foIlows easiIy that 

the cIass of pogroupoids cannot be defined by means of identities of the type 

μ;(Xl' .. a , X십 =V(X
1
, …, Xn) , where the latter expressions are words in the variables 

Xl' , x". This points out the nonalgebraic nature of condition 1, and thus 

presumably the Iimitations of this approach in reducing the cIass of posets to a 

category of groupoids specified by equations. 
If we consider the cIass of groupoids satisfying conditions 2 and 3 as well as 

the idempotent identity, then we may associate with each such groupoid a 

partially ordered set in the manner of the theorem. This aIlows us to construct 

a direct product 5.T of pogroupoids 5 and T which is again a pogroupoid and 

which corresponds by the theorem to the product of posets. This product has 

many of the standard properties of direct products. Some properties are 

preserved, such as connectedness, the lattice property, etcetera. Identities of the 

type w(x
1
, ... , Xn) =v(xl' ... , Xn) are in general not preserved unIess they hold for 

the cIass of aIl posets. Hence the properties which are preserved and which do 

not hold for the cIass of all posets cannot be defined by the addition oÍ identities 

to the identities 2, 3 and the idempotent identity. In concIusion then, the method 

works quite welI as far as it goes. For further refinements one might begin by 

considering sets with two binary operations such as is done in the case oÍ lattices 

for example. 

PROOF. Suppose that 5 is a pogroupoid. Then define an order relation 드 on 5 

according to the rule: y 드 X if and onIy if xy=x. 

We cIaim that (5, 드) is a poset. Since xx=x, it follows that X드X. Suppose that 

x 드 y and y르x. Then xy=x andyx=y. Hence, x=xy=x(yx)=yx=y by condition 2. 

Finally, suppose that x 드 y and y 드 z. Then yx=y and zy=z. It follows that 

z=zy=(z，씨(yx)=(zy)x=zx by condition 3, Ï. e. , x드z. Hence (5, 드) is a poset as 

claimed. 

Now suppose that (5, 드) is a pose t. Then we define a binary operation on S 
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according to the rule xy=x if y드x and xy= y otherwise. 

We assert that the resuIting groupoid is in fact a pogroupoid. Condition 1 is 

obviously satisfied. ‘ 

1'0 check condition 2 we consider three cases, viz. , x드y， y드x and (x,y) , 

where we denote the fact that x and y are not cornparable by the surnbol (x ,y). 

Thus, if x드 y， x(yx)=xy=y, yx=y. If y 드 x， x(yx)=xx=x and yx=x. Finally, 

if (x,y) , then x(yx)=xx=x and yx=x. Hence condition 2 is also satisfied. 

To verify condition 3 we consider nineteen cases, listed below. We shall perforrn 

the required cornputations as we list each case. 

(1) x<y, z<x, z<y: (xy)(yz)=yy=y, (xy)z=yz=y; 

(2) x<y, x< z , y< z: (xy) ( yz) = (xy)z; 

(3) x < y , x < z , z < y: (xy) ( yz) =yy= y , (xy)z= yz= y; 

(4) x<y, z<x, z<y: (xy)(yz)=yy=y , (xy)z=yz=y; 

(5) y < x, x < z , y < z: (x;’)(yz) = (xy)z; 

(6) z<y, y<x, z<x: (xy) ( yz) =xy;=x, (xy)z=xz=x; 

(7) x<y, x<z, (y, z): (xy) (yz) = (xy)z; 

(8) y<x, y<z , (x , z): (xy) (yz) = (xy)z; 

(9) z<x, z<y, (x ,y): (xy)(yz)=yy=y, (xy)z=yz=y; 

(10) y < x, z < x , (y, z): (xy) ( yz) = (xy)z; 

(11) x <y, z <y, (x , z): (xy)(yz)=yy=y, (xy)z=yz=y; 

(12) x < z , y < z , (x,y): (xy)(yz) = (xy)z; 

(1 3) x<y, (x, z) , (y , z): (xy) ( yz) = (xy)z; 

(14) Y < x , (x , z) , (y, z): (xy) ( yz) = (xy)z; 

(15) Y < z , (x,y) , (x, z): (xy)(yz) = (xy)z; 

(16) z <y, (x,y) , (x, z): (xy)(yz)=yy=y , (xy)z=yz=y; 

(17) z< x, (x,y) , (y, z): (xy) ( yz) = (xy)z; 

(18) x < z , (x, y) , (y , z): (xy)(yz) = (xy)z; 

(19) (x ,y) , (x , z) , (y , z): (xy) ( yz)= (xy)z. 

Hence it follows that condition 3 is indeed satisfied and the groupoid S defined 

above is in fact a pogroupoid. 

Now suppose f: S• T is a hornornorphisrn of pogroupoids, i. e. , f(xy) = f(x )f(y). 

Then, if we consider the corresponding posets (S, 드) and (T , 드) it follows that 

f is a regular order preserving function. 

lndeed, if y 드 x, t: en xy=x, whence f(xy) =f(x)f(y) =f(x) , i.e. , f(y) 드f(x). 

AIso, if the situation (x,y) holds then xy=y andyx=x, so thatf(x)f(y)=f(y) 

and f(y)f(x)=f(x) , so that we either have f(x)=f(y) or (f(x) , f(y)). 
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Conversely, if f is a regular order preserving function from the poset(S, 三) to the 

poset (T , 드) and if S and T are the associated pogroupoids, thenf(xy)=f(x) f(y) , 
i. e. , f: S• T is a homomorphism. 

lndeed, if y 드 x , then f(y) 드f(x) , and thus f(x)f(y) =f(x) =f(xy). If (x,y) , 
then f(x)=f(y) or Cf(x) , f(y)) whence f(x)f(y)~f(y)=f(xy). 

The required functorial isomorphism is now the obvious one: F( (S , 드))=S， 

G(S)=(S, 드)， F (f)=f, G(f)=f. The proof of theorem 1 is now complete. 

Some properties of pogroupoids 

ln this section we prove a few propositions connecting properties of pogroupoids 

with properties of posets. 

PROPOSITION 1. A poset (S, 드) z's totally ordered zf and only zf zïs assodated 

pogroupoid S Z"S commutatz"ve. 

PROOF. Suppose that x,y ε S. Then xy=yx ε {x, y} , whence x 드 y or y 드 x, 
i. e. , (S , 드) is totalIy ordered. If (S, 드) is totally ordered, then x, y ε S implies 

x 드 y or y 드 x and hence in any case xy= yx. 

PROPOSITION 2. Su빼ose that S Z"S a groupoz"d such that xy= yx, x(yx) = yx and 

(xy)(yz) = (xy)z. Then also (xy)z=x(yz). 

PROOJ:<'. Let x, y , z ε S, then (xy)z= (xy) ( yz) = (yx)(zy) = (zy) (yx) = (zy)x = x(zy) 

=x(yz) , and the proposition folIows. 

COROLLARY. 1f S Z"S a commuta tz"ve pogroupoZ"d then S Z"S assoâatz"ve. 

PROPOSITION 3. A poset (S, 드) has the property that for x, y and z, (x, y), 
(y , z) z"mphes x=z or (x, z) , zf and only zf z"ts assoâated pogroupoz"d z's assoâative. 

PROOF. Assume that (S , 드) is a poset such that incomparability is transitive. 

We take x , y and z elements of S and we consider the expression x(yz). There 

are three possibilities, viz. , x(yz)=x, x(yz)=y, x(yz)=z. , If x(yz)=x then 

yz 드 x. If yz=y, then z 드y 드 x， whence(xy)z=x. If y 드 z， then y 드 z 드 x and 

(xy)z=x. If (y , z) , then x(yz) =xz=x, whence z 드 x a l"ld so (x, y) is imp:)ssible 

since then (x , z) by transitivity of incomparability. If x 드 y , then z三x contradicts 

(y , z). Hence y 드 x and (xy)z=xz=x(yz)=x. 

If x(yz)=y, then yz=y and xy=y, it follows that (xy)z=y , i. e. , x(yz) = (xy)z. 

If x( yz) =z, then yz=z and xz=z. If y 드 z and x 드 z , then (xy)z=z=x(yz). 

AIsCl, if (x , z) and (y, z) , then (x ,y) whence (xy ),õ=z=x(yz). The remaining 
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cases are y드z and (x. z) or (Y. z) and x 드 z. We have respectively (xy)z=xz=z 

or (xy)z=yz=z in the first case and (xy)z=xz=z or (xy)z=yz=z in the second 

case. 

Hence it foIIows that S is an associative pogroupoid. 

On the other hand. assume that x( yz) = (xy)z for aII x. y. z E S. Suppose that 

(x.y) and (Y. z). Hence (xy)z=yz=z and x(yz)=xz=z. Thus. we cannot have 

z 드 x. AIso. (zy)x=yx=x and z(yx)=zx=x. so that we cannot have x 르 z. It 

foIIows that (x. z). i. e.. incomparabiIity is a transitive relation. The proposition 

foIIows. 

TypicaIIy. if the poset (S. 드) is not connected. then we can decompose (S. 드) 

into the disjoint union of two posets S=A U B. A n B=rþ. with x ε A. y ε B 

implying (x. y). Thus. suppose Y. z ε B. If S is an associative pogroupoid. 

(x.y). (z.x) implies (z.y). whence B is a union of points. Similarly A 

then 

IS a 

union of points. Thus (S. 드) is a union of points. i. e.. (x.y) if x~y. The 

associated pogroupoid is the right semigroup with multiplication xy=y. 

COROLLARY. 11 S z's an associa#ve pogro때oz"d whz"ch Z"S not the right seηgigrozφ， 

then (S. 드) is a connected poset. 

Connectedness 

Suppose S is any groupoid whatsoever. Then a subset A 01 S is connected z'n a 

subset B of S. ií given any x. y ε A. there is a finite subset {a1 • .••• ak} of B such 

that: 

xa1 =a1x. api+l =ai+1ai’ z" =1 •...• k- l, y와=aky. 

A subset A of S is connected if it is connected in itseIf. 

PROPOSITION 4. If 1: S• T Z"S a homomorphz"sm of grouþoz"ds and zf A ζ S is 

connected z'n B C S. then f(A) C T is connected z"n f(B) C T. 

PROOF. The proof is a trivial consequence of the fact that if xy=yx in S. then 

f(x)f(y)=f(y)/(x) in T. 

COROLLARY. The homomorPhlc z'mage 01 a connected groupoz"d z's itself connected. 

PROOF. Take A=B=S and f(S)=T. the concIusion foIIows. 

PROPOSITION 5. The poset (S. 드) Z"S connected zf and only zf its assodated 

pogrozφoza z"s connected. 

PROOF. If (S. 드). then we define a relation '" on S by saying x"'y provided 
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there exists a finite subset {al' "', ak} of S such that the following statements 

are simultaneously false: 

Cx. a1) , (ai• ai+l)' i=l, …. k-l , (ak.y). 

This is an equivalence relation which partitions S into subsets which we shall 

call the components of S. Cleady, if A and B are different components of S, 
then x ε A and y ε B implies (x,y). lndeed, if it is false that (x,y). theη taking 

a1 = y. it follows that the following statements are simultaneously false: 

(x.y). (y.y). Hence x~y. i.e .• x and y are elements ()f the same component. 

Now. in terms of pogroupoids the fact that (x.y) is false, is equivalent to 

saying xy= yx. The proof of the proposition is now immediate. 

COROLLARY. If S z's an associative pogroupoid which is not the right semigrozφ， 

then S z's connected. 

A direct proof of this corollary. i. e.. one that does not make use of the 

machinery already developed and which relies only on the established identities 

does not seem excessively easy. 

LEMMA. If S is an associa#ve pogroupoz'd. then xy ~ yx. xz ~ zx and y T' z 

z'mplies yz ~ zy. 

PROOF. If xy~yx. then xy=y and yx=x. lndeed, if xy=x. then yx=y and y= 

yx=x(yx)=xy=x. whence xy=yx. Now. if xy~yx. xz~zx. then (yx)z=xz=z= 

y(xz)=yz and y=xy= (xz)y = z(xy) =zy. The lemma follows. 

PROPOSlTION 6. If S z's a comzected associa#νe pogrozφoid. then given any 

elements x and y there is an element z such that xz=zx and yz=zy. 

PROOF. Suppose x and y are elements for which no element z with the required 

properties exists. Let {a1• …. ak } be a minimal set of elements connecting x and 

y. Then. without loss of generality we may take k=2 by identifying y with a3 

if necessary. Thus, xa1 =a1x, a1a2=a2a1• a2y=ya2• lt follows that xaz 낯 azx and 

xy ~ yx. whence by the lemma a2y ~ ya2 or a2=y. But then az=y. and a1 =z is 

the required element. 

Now suppose that S is a connected and associative pogroupoid. We let x~y if 

either x=y or (x,y). It follows that ~ is an equivalence relation. which 

decomposes S into a set of equivalence classes which we shall denote by [xl = {y I 
x~y}. 

PROPOSlTION 7. If S z's a connected and associatz"ve pogroupoid , let S/~ denote 
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the lamily 01 equivalence classes [찌 • Then, SI"" becomes a commutatiν'e þogrozψoid 

with the oþeration dζfined by [x] [y] = [xy]. 

PROOF. To show that Hle operation is well-defined we need to show that if 

x""x' and y""y', then also xy""xy'. If x=x,y=y', the situation is trivial. 

If x=x' and (y,y') , suppose that xy~xy'=xy'. Then, either xy 드 xy' or xy' 드 xy. 

Hence in the first case (xy) (xy') = (xy')(xy)=xy'. From the associative law and 

condition 2 we find that (yx)y'=xy' and y'(xy) =xy'. But then y' 드 xy or xy 르 y'. 

Sh"lce (y,y') , we have in either case xy=x, i. e. , y드 x， and thus since (y,y') , 

f드 x or (y', x). If y' 드 x， then xy' =xy'=x and xy=x so that xy=xy'. If xy' 드 

xy, the same ar홍ument holds provided we interchange y and y'. Since xy~x'y'= 

xy' we reach a contradication and xy""xy'. 

If (x, x') and y=y', suppose that xy~xy' =xy. Then, xy < xy or xy 드 xy. In 

the second case (xy)(xy) = (xy)(xy)=xy. We find that by the associative law and 

condition 2, (xx)y=xy and (x x)y=xy. Thus, since (x, x) we have xψ=xy， 

whence xy""xy'. The first case is similar. Since we assumed xy~xγ we reach a 

contradiction and xy""xy'. 

If (x, x) and (y,y') , then x 드 y implies x 드 y or y드 X， and thus x 드 y. We 
have xy=y, xy=yx=y, and xγ=x(yy')=(xy)y'=yy'=y' so that (xy, xy'). 

Similarly for x 드 y , x<y', Y 드 x , y<x , y' 드 x , y' 드 X , with the appropriate 

interchange of symbols. The case remaining is that where also (x ,y) , (x,y'), 
(x' ,y) and (x,y'). But then xy=y, xγ=y' and (xy, x y') as well. Hence "" is 

indeed well defined and SI"" becomes a pogroupoid immediately. 

To show commutativity we must show that xy""yx, i. e. , xy= yx or (xy , yx). 

Now, if x드y， then xy=yx=y while if y 드 x， then xy=yx=x, so that xy "" yx. 

If (x ,y) , then xy=y and yx=x so that (xy,yx) , which means that xy "" yx as 

asserted. The proposition follows. 

Of course, in the light of proposition 1 this means that (SI"" , 드) is a totally 

ordered set. Now, if [x] 드 [y] , then α ε [x] and ß ε [찌 yield [aß] = [xy) = [y] , 

so that αß""ß， whence αβ=β or (αβ， ß). Now , (αß， ß) implies (α찌β=αß=ß. 

Since presumably αβ낯ß， we have a contradiction, i. e.. the case (αβ， ß) does 

not occur. 

Since we also have ßα""ß， we must have ßα=ß or (ßα，ß). Now (βα， φ 

implies (ß，α)ß=β and β(ßα)=ß，α. Suppose ßα # β. Then βα=α. Now by the 

equivalence βα~αß we find that α ~ β and hence x "" y , i. e. , [x] = [y]. Thus, 

if [x] ~ [y] , we must have αβ=ßα=β， i.e. , α 드 ß. 
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FinalIy, the equivalence classes [xl are themselves pogroupoids which are also 

associative. Since α， ß ε [xl impIies α=ß or (α，ß)， it foIIows that [xl itself is 

the right semigroup and that [xl as a poset consists of loose points. Proposition 7 

thus has the foIIowing. 

COROLLARY. S z.s an assocz"aHve pogroupoid zf and only if (S, 드) is an ordinal 

sum of posets (Si' 드)， iεI， such that each poset (Si' 드) is a collectioη 01 loose 

points, i. e. , a set along with the diagonal relation. 

The converse is quite immediate, i. e. , if (S , 드) is an ordinal sum of posets 

(Si' 드)， iEI, such that each poset (Si' 三) is a coIIection of loose points, then if 
(x,y) and (y , z) , it follows that x,y,zESi for thesame index i ε I , and thus if 

x =;i: z, then (x, z). Hence we have 

COROLLARY 2. (，연S’ 드) i상s a poseαt suc쩌h t뼈haαt for’ xι’， y’ and z (x， y씨) and (y , z깅) i1η%’np뼈lμzt%.깅e 

x=Z 0αr’ (x， z상)，’ zf an싫z뼈d only if C어5， 드) i상.3S a%% 67서dinι앙? S앓μm of poset.삶s (5작i’ 드)，’ t ε I , 
’ 

S앓μch that each poset (Si' 드) is a collection of loose points, i. e. , a set along wzïh 

the diagonal relation. 

Other Iaws 

We have looked at the effect of associativity and commutativity. In this section 

we consider several other la ws. 

PROPOSITION 8. Eveγy pogroupoid S is a flexible groupoid , 
for all x,y ε S. 

z. e. , (xy)x = x(yx) 

PROOF. Since x(yx) = yx, the flexible law becomes equivalent to the statement 

(xy)x=yx. Now, if xy=x, then y 드 x and hence yx=x as welI. Hence (xy)x=x= 

yx. If xy=y, then (xy)x=yx also. 

COROLLARY. II S is a pogro때oitl， then in 싫 associated poset (S, 드) it is true 

that xy=yx or (xy ,yx). 

PROOF. Since (xy) (yx) = (xy)x=yx and (yx) (xy) = (yx)y=xy the conclusion follows. 

PROPOSITION 9. Every pogroupoid S is an alternative groμ:poid i. e. , (xx)y=x(xy) 

and (yx)x=y(xx) for all x,y ε S. 

PROOF. Since i=x, we need to show that xy=x(xy) and yx= (yx)x. If xy=x, 

then xy=x=i=x(xy) and if xy=y, then xy=y=xy=x(xy). Similarly, if yx=x, 

then yx=x=i=(yx)x, while if yx=y, then yx=y=(yx)x. 
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The cIass of groupoids S satisfying the folIowing conditions 1: i = X; 

2: (xy)x=x(yx); 3: (xx)y=x(xy); 4: y(xx) = (yx)x; 5: x(yx)=yx; 6: (x.씨 (yz) = (xy) 

z, comes relatively cIose to describing the cIass of pogroupoids. They are not the 

same cIass however. To see this is actuaIIy quite easy. In fact, if we Iet w(xl' . 

, X,Z) be any word in the variables, xl' …, xn' where variables may be absent, and 
where a word consists of a sequence of variables and parentheses so that for 

particular values in the groupoid S the expression is always defined, then a 

typicaI identity for a groupoid has the form 
W(x1' …, xJ =ν(x- ’ "， xη). 

ClearIy, if 1 is a set of identities satisfied by groupoids S and T , then if we 

define SXT by taking the product componentwise, i. e. , (s , t)'(s',r) =(ss',tt'), 

then SXT satisfies the same set of identities. 

Thus, if the pogroupoids were definable by a set of identities 

infinite of whatever cardinality, theJ,J. given pagroupoids S and T , 
product SXT should aIso be a pogroupoid. 

1, finite or 

the direct 

Consider the pogroupoid S corresponding to the two point poset S= {a, b} with 
2 ...,.. 2 

a 드 b. Then S has the table a<-=a, ab=ba=b~=b. In particular, in SXT we find 

that (a, b). (b, a) = (b, b) , whence condition 1 in the definition of pogroupoids is 

violated. Thus, the cIass of pogroupoids is not cIosed under this type of direct 

product. Later on we shaII see that this problem can be adjusted. However we 

do have the foIIowing concIusion. 

PROPOSITION 10. The class 01 pogro째oz'ds cannot be equatz'onally delz'ned. 

For examples demonstrating the independence of the conditions 1,2 and 3 in the 

definition of pogroupoid we note the foIIowing. 

Condition 1 is not a consequence of conditions 2 and 3, since then the cIass of 

pogroupoids would be equationaIIy defined. 

Condition 2 is not a consequence of conditions 1 and 3. Indeed, let X be the 

left semigroup on at least two elements, xy=x. Then 1 and 3 are triviaIIy 

satisfied, while if x~y， then x(yx)~yx. 

AIso condition 3 is not a consequence of conditions 1 and 2. Let X= {a , b. c} be 

the groupoid with multiplication table: 

a b c 

a I a a c 

b I a b b 

c I c b c 
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then one checks easily that a(ba)=ba, α(ca)=ca， b(ab)=ab. b(cb)=cb, c(ac)=ac, 
c(bc) = bc, (ab)(bc) ~ (ab)c and xy ε {x, y} flJr all x. y 드 5. 

There is a sort of standard technique in isolating which posets satisfy a given 

identity. We give an example using only three variables x,y and z. The law we 

will consider is x(yz)=y(xz). For reference we will use the nineteen cases in the 

proof of theorem 1. 

(1) x(yz)=xy=y, y(xz)=yx=y; 

(3) x(yz)=xy=y, y(xz)=yz=y; 

(5) x(yz)=xz=z, y(xz)=yz=z; 

(7) x(yz)=xz=z, y(xz)=yz=z; 

(9) x(yz)=xy=y, y(xz)=yx=x; (not equal) 

(11) x(yz)=xy=y, y(xz)=yz=y; 

(13) x(yz)=xz=z, y(xz)=yz=z; 

(15) x(yz)=xz=z, y(xz)=yz=z; 

(17) x(yz)=xz=x, y(xz)=yx=x; 

(19) x(yz)=xz=z, y(xz)=yz=z. 

(2) x(yz)=xz=z, y(xz)=yz=z; 

(4) x(yz)=xy=y, y(xz)=yx=y; 

(6) x(yz)=xy=x, y(xz)=yx=x; 

(8) x(yz)=xz=z, y(xz)=yz=z; 

(10) x(yz)=xz=x, y(xz)=yx=x; 

(12) x(yz)=xz=z, y(xz)=yz=z; 

(14) x(yz)=xz=z, y(xz)=yz=z; 

(16) x(yz)=xy=y, y(xz)=yz=y; 

(18) x(yz)=xz=z, y(xz)=yz=z; 

Reading down the list we find that the only situation where equality fails to 

hold is the case where z 드 x, z 드 y and (x,y). This means simply that the poset 

cannot have a subset of the type {x, y , z} with z 드 x, z 드 y and (x,y). Another 
way of saying this is that if x and y have a lower bound, then x or y is a lower 

bound for {x, y} • 

PROPOSITION 11. A pogrozφoid 5 sati상ies the condition x(yz) =y(xz) for all 

x， y ， zε5zfandoηly zf it is trμe that zf x and y are elements wz'th a lou’er bound, 
then xor y is a lower bound for {x,y}. 

PROPOSITION 12. If 5 is a connected þogrouþoid such that x( yz) =y(xz) , then 

in (5 , 드) any two elements have an upper boμnd. 

PROOF. If x드y or y 드 x, there is no problem. Suppose that we consider a 

smallest set {al''''' 따} connecting x and y. Suppose k 르 3. Then, we have a set 

{x , al' a2, a3}, where (x, a2) , since otherwise we would be able to eIiminate a1 

from this smallest set. Now, a1 cannot be a lower bound of x and a2’ 
so that it 

must be an upper bound. But this impIies that a2 is a lower bound of {al' a3} 

with (al' a3)' a manifest impossibility. Thus k드2. If k=2, then if y replaces a3 
we have another contradiction. Thus k= 1, and x and y have an upper bound. 

Given a subset A of a pogroupoid 5, let U(A) = {zlzx=xz=z for all xEA}. 
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Thus U(A) is the set of upper bounds of A in (S , 드). 

PROPOSITION 13. Sztppose t상at S is α pogroupoid such that x( yz) = y(xz). ThCil 

101' A드S， eithe1' U(A) =rþ 0γ U(A) is a commutative POg7'OZ깅’oid. The converse is 

a!so t1'ue. 

PROOF. Suppose z , w ε U(A) ， x ε A. Then z(wx)=w(zx)=zμI=Zνz. Since U(A) 

is itself a pogroupoid, the conclusion follows. Conversely, suppose that x( yz)~ 

y(xz) for some choice of x, y and z. Then, we must be working i n case (9) , i. e. , 
z 드 x， z 드 y and (x,y). Now, {x， y} ζU(z) ， and thus U(z) is not a commutative 

pogroupoid. 
Thus, the law x( yz) = y(xz) identifies those posets (S , 드) such that the set of 

upper bounds U(A) of a given subset A is either empty or totally ordered. 

Direct products of pogroupoids 

Suppose that S and T are pogroupoids, then as we saw already, the direct 

product SXT of S and T is not in general a pogroupoid. We can however define 

a convenient direct product, which we shall denote by S.T. 

Construction of S.T via posets 

If (S, 드) and (T, 드)， then the product of these posets is defined by taking 

the set SXT and on it defining the partial order (s, t) 드 ($', n if and only if 

s < s' and t 드 t'. 

This yields a poset which we shaIl denote by (S, 드) . (T, 드). The poset 

(S , 드)'(T ， 드) in its turn determines a pogroupoid which we shall denote by S.T. 

More generally, if {(Sa' 드) α ε n} is a fam iIy of posets, then we can define a 

poset (S, 드)=naεn(Sα， 드) in essentially the same fashion. 

Construction of S.T via groupoids 

The pogroupoids are among the groupoids S satisfying the three conditions 

1:x2=x; 2: x(yx)=yx and 3: (xy)(yz)=(xy)z. 

Since the defining conditions are words, it is clear that the direct product of 

elements in this class is again in this class. We shaIl refer to groupoids of this 

type as weakly o1'de1'ed g1'oupoids or wog1'oupoids for purposes of abbreviation. 

Suppose now that S is a wogroupoid. Then we define a relation 드 on S by 

letting y 드 x if and onIy if xy=x. Since ￡=x， it knows that x 드 x. AIso, if 

X 드 yand y 드 x， then x=xy=x(yx)=yx=y. F‘inaIly, if x드 y and y 드 z， then 
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z= (zy) (YX) = (zY)X=ZX, whence x 드 z. Hence (S， 드) is a poset. Define G*(S) = 

(S， 드). 

If S and T are wogroupoids, and if f: S• T is a homomorphism then xy = x 

impIies f(x)f(y)=f(x) , and thus the mapping f: (S， 드)→(T， 드) is order 

preserving. Now, if (x,y) in (S, 드)， then xY=Fx. This does not guarantee that 

f(xy) =F f(x) , and so it is no longer true that f: (S , 드)→(T， 드) is a regular 

order preserving function. If we let G*(f)=f, then we do get a contravariant 

functor from the category of wogroupoids and homomorphisms to the category of 

posets and order preserving maps. 

PROPOSlTION 14. If S and T are wogrouþoz'ds, then 

G용(sxT) = G*(S). G*(T). 

PROOF. It is clear that in both cases the underlying sets are precisely the 

same, i. e. , SXT. 

Now, let (s, t) 드 (s' , r) in G*(S).G*(T) , then s 드 s' and t 드 f , i. e. , S/s=s/’ 

rt= t'. Hence (s' ,r) (s, t)=(s's,t't) =(s',r) so that (s, t) 드 (s' , r) in G*(SXT). 

On the other hand, if (s , t) 드 (s' ,r) in G*(SXT) , then (s' ,r) (s, t)=(s',r)=(s's, 

t't) , so that s's=s'’ rt= t' and (s , t) 드 (s' , r) in G션S).G차T). 

Thus, in terms of the functors G* and F (from theorem 1), we have S.T= 

FG용(SXT)=F(G*(S).G용(T)) defined for wogroupoids, since FG* is a covariant 

functor from the category of wogroupoids and homomorphisms to the category of 

pogroupoids and homomorphisms. 

Suppose that S is the pogroupoid corresponding to the two point poset S= {a, b} 
2 ...2 with a 드 b. Then S has table a~=a， ab=ba=b~=b. The table for S.S can be 

constructed by observing that G*(SxS) is the poset with Hasse diagram: 

Thus, we have the table: 
S.S 

(a, a) 

(a, b) 

(b , a) 

(b, b) 

(b,b) 
~O、

(b, a)ó O(a, b) 

(a, a) 

(a, a) 

(a , b) 

(b , a) 

(b, b) 

\。/
(a,a) 

(a, b) 

(a, b) 

(a ,b) 

(a , b)* 

(b ,b) 

(b, a) 

(b, a) 

(b, a)* 

(b, a) 

(b ,b) 

(b, b) 

(b , b) 

(b, b) 

(b, b) 

(b, b) 
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On the other hand, SxS has the table: 

SXS (a , a) (a , b) (b, a) (b, b) 

(a , a) (a , a) (a , b) (b , a) (b , b) 

(a, b) (a, b) (a, b) (b , b)* (b, b) 

(b , a) (b, a) (b， b)휴 (b , a) (b, b) 

(b, b) (b, b) (b, b) (b, b) (b, b) 

The effect of FG* on SXS has thus been to adjust the positions in the table 

marked with an asterisk. 
The product S.T of wogroupoids has the standard properties. Thus, if S and 

T are wogroupoids and f: S• T is an isomorphism, then G용(f): (S , 드)→(T， 드) 

is an isomorphism of posets and thus FG*(f): F(S, 드)→F(T， 드) is an isomorphism 

of pogroupoids. As a matter of fact, on the underlying sets the mappings remain 

unchanged. Hence, since SXT and TXS are isomorphic by F(s,t)=(t, s) , S.T 

and T'S are isomorphic by the same map. Since (SXT)XU and SX(TXU) are 

isomorphic by f((s , t)， 씨 = (s, (t， χ)) ， (S.T).U a i:td S.(T.U) are isomorphic by the 

same map. 

The mappings SXT• S and SXT• T given by projection on the components 
are homomorphisms, and thus induce the projection homomorphisms S. T • S and 
S.T • T. 

If we consider only wogroupoids with an element e such that ex=xe=x for all 

xεS， i. e. , we adjoin a universal lower bound, then considering only homomor­

phisms f: S• T such that f(e) =e, products SXT have the following universal 
property. Suppose that U is a wogroupoid, and suppose that we have homomor­

phisms f: S• U , f' :U• S, g: T • U , ζ:U→T such that g'f(S)=e, f'g(T) =e, 
fγ:S→S and g'g: T • T are identity maps. Define h: U• SXT by h(U) = (f'(u) , 
ζ(μ)). Then h is quite clearly a homomorphism. Given (s, t)εSXT， let κ= 

f(s)g (t). Then 1'(μ)=se=s， g'(μ)=et=t， and thus h(u) = (s, t) , whence h is a 
surjection. The same universal property then holds for products S.T of 

pogroupoids. 

Although the product S'T preserves many common properties of S and T such as 

connectedness (the product of connected posets is connected), the lattice property 

((x,y) V (χ， ν)=(x V u, y V v) , (x,y) V (μ， v)=(x V μ， y v ν')) ， the property of 

being a product of chains, etcetera, other properties are lost. Among these are 

commutativity, associativity and the property that the set of upper bounds of a 

subset is empty or a chain. The three properties we’ve cited are precisely those 
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given by algebraic identities, viz. , xy= yx, x(yz) = (x y)zand x(yz) = y(xz). Othèr 

identities are preserved, e. g. , properties 2 and 3 themselves, i=x, the flexible 

property (xy)x=x(yx). and the alternative properties (xx)y느x(xy) , (yx)x=y(xx). 

PROPOSITION 15. Suppose that w(x, y , z) =ν(x，y， z) z's an z"dentzïy z"n three vaγz"ables 

whz"ch holds for chaz"ns and whz"ch Z"S preserved under products. Then thz"s z"dentity 

holds for posets z"n general. 

PROOF. Here we mean that the identity is to be appIied to the associated 

pogroupoids of course. We observe that since the identity holds for chains with 

three elements, it also holds for posets of the type whose Hasse diagram is drawn 

below: 
O 

/ \ 
o 0 

/ \ / \ 
。 o 。

\ / \ / 
。 o

\ / 
。

The nineteen cases are included in this diagram as an inspection w iI1 demonstrate 

quite readily. Since the identity must hold in each of the nineteen cases, it must 

hold in general. 

In particular then on pogroupoids it must be a consequence of the properties 

defining pogroupoids. Without going into detail, it seems clear that one can prove 

a proposition equivalent to proposition 14 for identities involving an arbitrary 

finite number of variables which hold for chains and which are preserved under 

products. 

The University of Alabama 
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