• Title/Summary/Keyword: AlInGaN

Search Result 392, Processing Time 0.024 seconds

RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs (AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구)

  • Lee, Jong-Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.29-34
    • /
    • 2004
  • This paper reports the RF dispersion and linearity characteristics of unpassivated AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beam epitaxy (MBE). The devices with a 0.5 ${\mu}{\textrm}{m}$ gate-length exhibited relatively good DC characteristics with a maximum drain current of 730 mA/mm and a peak g$_{m}$ of 156 mS/mm. Highly linear characteristic was observed by relatively flat DC transconductance (g$_{m}$) and good inter-modulation distortion characteristics, which indicates tight channel carrier confinement of the InGaN channel. Little current collapse in pulse I-V and load-pull measurements was observed at elevated temperatures and a relatively high power density of 1.8 W/mm was obtained at 2 GHz. These results indicate that current collapse related with surface states will not be a power limiting factor for the AlGaN/InGaN HEMTs.

Analysis of Current-Voltage characteristics of AlGaN/GaN HEMTs with a Stair-Type Gate structure (계단형 게이트 구조를 이용한 AlGN/GaN HEMT의 전류-전압특성 분석)

  • Kim, Dong-Ho;Jung, Kang-Min;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • We present simulation results on DC characteristics of AlGaN/GaN HEMT having stair-type gate electrodes, in comparison with those of the conventional single gate AlGaN/GaN HEMTs and field-plate enhanced AlGaN/GaN HEMTs. In order to reduce the internal electric field near the gate electrode of conventional HEMT and thereby to increase their DC characteristics, we applied three-layered stacking electrode schemes to the standard AlGaN/GaN HEMT structure. As a result, we found that the internal electric field was decreased by 70% at the same drain bias condition and the transconductance (gm) was improved by 11.4% for the proposed stair-type gate AlGaN/GaN HEMT, compared with those of the conventional single gate and field-plate enhanced AlGaN/GaN HEMTs.

Analysis of the Abnormal Voltage-Current Behaviors on Localized Carriers of InGaN/GaN Multiple Quantum well from Electron Blocking Layer

  • Nam, Giwoong;Kim, Byunggu;Park, Youngbin;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.219-219
    • /
    • 2013
  • The effect of an electron blocking layer (EBL) on V-I curves in GaN/InGaN multiple quantum well is investigated. For the first time, we found that curves were intersected at 3.012 V and analyzed the reason for intersection. The forward voltage in LEDs with an p-AlGaN EBL is larger than without p-AlGaN EBL at low injection current because the Mg doping efficiency for p-GaN layer was higher than that of p-AlGaN layer. However, the forward voltage in LEDs with an p-AlGaN EBL is smaller than without p-AlGaN EBL at high injection current because the carriers overflow from the active layer when injection current increases in LEDs without p-AlGaN EBL and in case of LED with p-AlGaN EBL, the carriers are blocked by EBL.

  • PDF

Investigation of defects and surface polarity in AlN and GaN using wet chemical etching technique (화학적 습식 에칭을 통한 AlN와 GaN의 결함 및 표면 특성 분석)

  • Hong, Yoon Pyo;Park, Jae Hwa;Park, Cheol Woo;Kim, Hyun Mi;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.196-201
    • /
    • 2014
  • We investigated defects and surface polarity in AlN and GaN by using wet chemical etching. Therefore, the effectiveness and reliability of estimating the single crystals by defect selective etching in NaOH/KOH eutectic alloy have been successfully demonstrated. High-quality AlN and GaN single crystals were etched in molten NaOH/KOH eutectic alloy. The etching characteristics and surface morphologies were carried out by scanning electron microscope (SEM) and atomic force microscope (AFM). The etch rates of AlN and GaN surface were calculated by etching depth as a function of etching time. As a result, two-types of etch pits with different sizes were revealed on AlN and GaN surface, respectively. Etching produced hexagonal pits on the metal-face (Al, Ga) (0001) plane, while hexagonal hillocks formed on the N-face. On etching rate calibration, it was found that N-face had approximately 109 and 15 times higher etch rate than the metal-face of AlN and GaN, respectively. The size of etch pits increased with an increase of the etching time and they tend to merge together with a neighbouring etch pits. Also, the chemical mechanism of each etching process was discussed. It was found that hydroxide ion ($OH^-$) and the dangling bond of nitrogen play an important role in the selective etching of the metal-face and N-face.

Simulated DC Characteristics of AlGaN/GaN HEMls with Trench Shaped Source/Drain Structures (트렌치 구조의 소스와 드레인 구조를 갖는 AlGaN/GaN HEMT의 DC 출력특성 전산모사)

  • Jung, Kang-Min;Lee, Young-Soo;Kim, Su-Jin;Kim, Dong-Ho;Kim, Jae-Moo;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.885-888
    • /
    • 2008
  • We present simulation results on DC characteristics of AlGaN/GaN HEMTs having trench shaped source/drain Ohmic electrodes. In order to reduce the contact resistance in the source and drain region of the conventional AlGaN/GaN HEMTs and thereby to increase their DC output power, we applied narrow-shaped-trench electrode schemes whose size varies from $0.5{\mu}m$ to $1{\mu}m$ to the standard AlGaN/GaN HEMT structure. As a result, we found that the drain current was increased by 13 % at the same gate bias condition and the transconductance (gm) was improved by 11 % for the proposed AlGaN/GaN HEMT, compared with those of the conventional AlGaN/GaN HEMTs.

Semi-insulation Behavior of GaN Layer Grown on AlN Nucleation Layer

  • Lee, Min-Su;Kim, Hyo-Jeong;Lee, Hyeon-Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.132-132
    • /
    • 2011
  • The sheet resistance (Rs) of undoped GaN films on AlN/c-plane sapphire substrate was investigated in which the AlN films were grown by R. F. magetron sputtering method. The Rs was strongly dependent on the AlN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using x-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AlN nucleation layer (NL) and was gradually relaxed as increasing AlN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AlN layer condition, which was originated by the crossover from planar to island grains of AlN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AlN buffer layer affected the electric resistance of GaN film.

  • PDF

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

An Analytical Model for the I-V Characteristics of a Short Channel AlGaN/GaN HEMT with Piezoelectric and Spontaneous Polarizations (압전 및 자발 분극을 고려한 단채널 AlGaN/GaN HEMT의 전류-전압 특성에 관한 해석적 모델)

  • Oh Young-Hae;Ji Soon-Koo;Suh Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.103-112
    • /
    • 2005
  • In this paper, in order to derive the current-voltage characteristics of n-AlGaN/GaN HEMTs with the piezoelectric and spontaneous polarizations, we suggested analytical solutions for the two-dimensional Poisson equation in the AlGaN and GaN regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing in the quantum well. Obtained expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the cutoff voltage decreases as drain voltage increases. Compared with the conventional models, the present model seems to provide more reasonable explanation for the drain-induced threshold voltage roll-off and the channel length modulation effect.

Comparison of growth and properties of GaN with various AlN buffer layers on Si (111) substrate (Si (111) 기판 위에 다양한 AIN 완충층을 이용한 GaN 성장과 특성 비교)

  • 신희연;이정욱;정성훈;유지범;양철웅
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 2002
  • The growth of GaN films on Si substrate has many advantages in that Si is less expensive than sapphire substrate and that integration of GaN-based devices with Si substrate is easier The difference of lattice constant and thermal expansion coefficient between GaN and Si is larger than those between GaN and sapphire. However, which results in many defects into the grown GaN. In order to obtain high duality GaN films on Si substrate, we need to reduce defects using the buffer layer such as AlN. In this study, we prepared three types of AlN buffer layer with various crystallinity on Si (111) substrate using MOCVD, Sputtering and MOMBE methods. GaN was grown by MOCVD on three types of AlN/Si substrate. Using TEM and XRD, we carried out comparative investigation of growth and properties of GaN deposited on the various AlN buffers by characterizing lattice coherency, crystallinity, growth orientation and defects formed (voids, stacking faults, dislocations, etc). It is found that the crystallinity of AlN buffer layer has strong effects on growth of GaN. The AlN buffer layers grown by MOCVD and MOMBE showed the reduction of out-of-plane misorientation of GaN at the initial growth stage.

Investigation of Buffer Traps in AlGaN/GaN Heterostructure Field-Effect Transistors Using a Simple Test Structure

  • Jang, Seung Yup;Shin, Jong-Hoon;Hwang, Eu Jin;Choi, Hyo-Seung;Jeong, Hun;Song, Sang-Hun;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.478-483
    • /
    • 2014
  • We propose a new method which can extract the information about the electronic traps in the semi-insulating GaN buffer of AlGaN/GaN heterostructure field-effect transistors (HFETs) using a simple test structure. The proposed method has a merit in the easiness of fabricating the test structure. Moreover, the electric fields inside the test structure are very similar to those inside the actual transistor, so that we can extract the information of bulk traps which directly affect the current collapse behaviors of AlGaN/GaN HEFTs. By applying the proposed method to the GaN buffer structures with various unintentionally doped GaN channel thicknesses, we conclude that the incorporated carbon into the GaN back barrier layer is the dominant origin of the bulk trap which affects the current collapse behaviors of AlGaN/GaN HEFTs.