• Title/Summary/Keyword: Al-Si Coating Layer

Search Result 137, Processing Time 0.028 seconds

Fabrication of Plasma Resistant Y2O3-Al2O3-SiO2 Coating Ceramics by Melt-Coating Method (용융코팅법에 의한 내플라즈마성 Y2O3-Al2O3-SiO2계 코팅 세라믹스 제조)

  • Park, Eui Keun;Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.359-368
    • /
    • 2020
  • This study is aimed at improving the plasma resistance of Al2O3 ceramics on which plasma resistant YAS(Y2O3-Al2O3-SiO2) frit is melt-coated using a simple heat-treatment process. For this purpose, the results of phase analysis and microstructural observations of the prepared YAS frits and the coating layers on the Al2O3 ceramics according to the batch compositions are compared and discussed with regard to the results of plasma resistance test. The prepared YAS frits consist of crystalline or amorphous or co-existing crystalline and amorphous phases according to the batch compositions, depending on the role and content of each raw material. The prepared YAS frit is melt-coated on the densely sintered Al2O3 ceramics, resulting in a dense coating layer with a thickness of at least ~ 80 ㎛. The YAS coating layer consists of crystalline YAG(Y3Al5O12), Y2Si2O7, and Al2O3 phases, and YAS glass phase. Plasma resistance of YAS coated Al2O3 ceramics is strongly dependent on the content of the YAG(Y3Al5O12) and Y2Si2O7 crystalline phases in the coating layer, especially on the content of the YAG phase. Comparing the weight loss of YAS coating ceramics with values obtained for commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the YAS coating ceramics is 6 times higher than that of quartz, 2 times higher than that of Al2O3, and 50 % of the resistance of Y2O3.

A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath (아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings (Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동)

  • Kim, Jung-Wook;Jeon, Jun-Ha;Cho, Gun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Micro-scale Observation of Corrosion of Hot-Dip Aluminized 11% Cr Stainless Steel

  • Cho, Min-Seung;Park, Choong-Nyeon;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.73-77
    • /
    • 2019
  • Hot-dip aluminized coating has been widely used to protect steel substrate against corrosion. In this study, the corrosion behavior of hot-dip aluminized type 409L (11% Cr) stainless steel (SS) was investigated using macro- and micro-scale polarization tests. An Al-Fe-Si alloy layer that was formed due to inter-diffusion of alloying elements between Al coating and SS substrate was observed between Al coating and 409L SS substrate. In both macro- and micro-scale polarization tests, the corrosion potential ($E_{corr}$) of the 409L SS substrate was much nobler than that of the Al coating and alloy layer. $E_{corr}$ of the alloy layer was between that of Al coating and 409L SS substrate. This indicates that the alloy layer can act as a buffer between the more active Al coating and the nobler SS substrate for pit growth in aluminized SS. The presence of the alloy layer appears to be helpful in hindering pitting corrosion of aluminized SS.

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Microstructure of Al-Si Coated Layer in PWA 1426 Alloy (PWA 1426 합금에서 Al-Si 코팅층의 미세조직)

  • Ahn, J.C.;Lee, K.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1999
  • Microstructure of Al-Si coated PWA 1426 alloy was studied. Diffusion coated specimens were heat treated for 4hr at $870{\sim}1087^{\circ}C$ and then were examined the changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. According to the result of EDS, it is supposed that the coated layer was composed of $Ni_2Al_3$. When diffusion treatment was conducted at $1087^{\circ}C$, coated layer varied from $Ni_2Al_3$ to NiAl phase and composed of mixed, denuded and inter-diffusion layer.

  • PDF

Decrease of Gate Leakage Current by Employing Al Sacrificial Layer Deposited on a Tilted and Rotated Substrate in the DLC-coated Si-tip FEA Fabrication (DLC-coated Si-tip FEA 제조에 있어서 기판 상에 경사-회전 증착된 Al 희생층을 이용한 Gate누설 전류의 감소)

  • 주병권;김영조
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.27-29
    • /
    • 2000
  • For the DLC-coaled Si-tip FEA, the modified lift off-process, by which DLC coated on both gate electrode surface and gate insulator in the gate aperture could be removed, was proposed. In the process, the Al sacrificial layer was deposited on a tilted and rotated substrate by an e-beam evaporation, and DLC film was coated on the substrate by PA-CVD method. Afterward the DLC was perfectly removed except the DLC films coated on emitter tips by etch-out of Al sacrificial layer. Current-voltage curves and current fluctuation of the DLC-coated Si-tip FEA showed that the proposed lift-off process played an important role in decreasing gate leakage current and stabilizing omission current.

  • PDF

Effects of Coating Conditions on the Thickness and Morphology of Alumina- or Carbon-Coated Layers on SiC Whiskers (알루미나 또는 카본 코팅 SiC 휘스커의 코팅층 두께 및 형상에 미치는 코팅조건의 영향)

  • 배인경;장병국;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.513-520
    • /
    • 1999
  • Alumina-coated SiC whiskers wee prepared by the calcination (1150$^{\circ}C$, 1h, Ar) of the alumina hydrate layer which was precipitated homogeneously on whisker surface from a solution of Al2(SO4)3 and urea as a precipitant. In addition carbon coated SiC whiskers were prepared by the pyrolysis (1000$^{\circ}C$, 4h Ar) of phenolic resin coated whisker. The effects of coating conditions on the thickness and morphology of the coated layers were examined by SEM and TEM. It was found that Al2O3-coating layers become thinner and more uniform with decreasing the Al2(SO4)3 concentration. Thin (0.075-0.1$\mu\textrm{m}$) and uniformly alumina-coating layers were obtained at the Al2(SO4)3 concentration 0.010mol/l. On the other han carbon-coating layers were uniform but very thin (5-16 nm) in thickness. For thicker carbon-coating layers ethanol as a disperse medium was found to be more efficient compared tousing acetone.

  • PDF

Effects of Adding Mg to AlSi Coating for Hot Stamping Steel (자동차용 핫스탬핑 AlSi 도금중 Mg 첨가효과)

  • Yang, Wonseog;Lee, Jeamin;Kim, Changkyu;Ahn, Seungho;Castaneda, Homero
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.196-203
    • /
    • 2021
  • To improve corrosion resistance and reduce the hydrogen uptake of 22MnB5, up to 5% Mg was added to the AlSi coating of 22MnB5. After hot-stamping and electrocoating were done on the metallic-coated specimen, the surface characteristics of the steel, hydrogen uptake content, and corrosion resistance were examined by transmittance electron microscopy, thermal desorption spectrometry, cyclic corrosion testing, and electrochemical impedance spectroscopy. Mg was investigated as MgO on the surface layer after hot-stamping while it existed as Mg2Si before hot-stamping. The total hydrogen content of 22MnB5 was decreased along with the Mg content. However, there was no difference at 0.2 wt% or more. When a small amount of Mg was added, the coating corrosion resistance was decreased, but when it was added at around 1.0 wt%, the greatest corrosion resistance increase was seen. However, when 3 wt% or more was added excessively, the corrosion resistance was decreased. MgO on the surface was considered to suppress H uptake by the AlSi melting solution and increase the barrier effect of the coating.