Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.2.101

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte  

Park, Jin Seo (Department of Advanced Materials Engineering, Kyonggi University)
Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.2, 2017 , pp. 101-106 More about this Journal
Abstract
$Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.
Keywords
Surface coating; Cathode; Lithium battery; Solid electrolyte;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Wang, W. Liu, S. Liu, J. Chen, H. Wang and S. Zhao, Electrochim. Acta, 2016, 188, 645-652.   DOI
2 M.H. Pyun and Y.J. Park, Nanoscale Research Letters, 2016, 11(1), 272.   DOI
3 X. Rui, O. Yan, M. Skyllas-Kzacos and T.M. Lim, J. Power Sources, 2014, 258, 19-38.   DOI
4 M.H. Pyun and Y.J. Park, J. Alloys Comp., 2015, 643, S90-S94.   DOI
5 G. Hu, M. Zhang, L.Wu, Z. Peng, K. Du, and Y. Cao, J. Alloys and Compounds., 2017, 690, 589-597.   DOI
6 Y. Xu, Y. Liu, Z. Lu, H. Wang, D. Sun and G. Yang, Applied Surface Sci., 2016, 361, 150-156.   DOI
7 H.J. Lee and Y.J. Park, Mater. Res. Bull., 2014, 58, 169-173.   DOI
8 H. Liu, C. Chen, C. Du, X. He, G. Yin, B. Song, P. Zuo, X. Cheng, Y. Ma and Y. Gao, J. Mater. Chem. A, 2015, 3(6), 2634-2641.   DOI
9 H.G. Song, J.Y. Kim, K.T. Kim and Y.J. Park, J. Power Sources, 2011, 196(16), 6847-6855.   DOI
10 X. Li, J. Liu, X. Meng, Y. Tang, M.N. Banis, J. Yang, Y. Hu, R. Li, M. Cai and X. Sun, J. Power Sources, 2014, 247, 57-69.   DOI
11 B. Huang, X. Li, Z. Wang, H. Guo, X. Xiong and J. Wang, J. Power Sources, 2014, 583, 313-319.
12 J. Shin, H. Jung, Y. Kim and J. Kim, J. Alloys Compd., 2014, 589, 322-329.   DOI
13 L. Chen, Y. Su, S. Chen, N. Li, L. Bao, W. Li, Z. Wang, M. Wang and F. Wu, Adv. Mater., 2014, 26(39), 6756-6760.   DOI
14 S. Watanabe, M. Kinoshita, T. Hosokawa and K. Morigaki, J. Power Sources, 2014, 258, 210-217.   DOI
15 M.H. Pyun and Y.J. Park, J. Electroceram., 2014, 33(3-4), 264-271.   DOI
16 Q. Li, G. Li, C. Fu, D. Luo, J. Fan and L. Li, Appl. Mater. Interfaces, 2014, 6(13), 10330-10341.   DOI
17 C.S. Kim and Y.J. Park, Solid State Ionics, 2014, 268, 210-215.   DOI
18 T. Wei, R. Zeng, Y. Sun, Y. Huang and K. Huang, Chem. Commun., 2014, 50(16), 1962-1964.   DOI
19 S.B. Lim and Y.J. Park, Nanoscale Research Letters, 2015, 10(1), 270.   DOI
20 C.S. Kim, J.H. Cho and Y.J. Park, Mater. Res. Bull., 2014, 58, 49-53.   DOI
21 X. Xiang and W. Li, Electrochim. Acta, 2014, 127, 259-264.   DOI
22 Y. Dai, L. Cai and R.E. White, J. Power Sources, 2014, 247, 365-376.   DOI
23 Y. Chen, Y. Zhang, B. Chen, Z. Wang and C. Lu, J. Power Sources, 2014, 256, 20-27.   DOI
24 K. Araki, N. Taguchi, H. Sakaebe, K. Tatsumi and Z. Ogumi, J. Power Sources, 2014, 269, 236-243.   DOI
25 B. Huang, X. Li, Z. Wang, H. Guo, Z. He, R. Wang, J. Wang and X. Xiong, Mater. Letters, 2014, 115, 49-52.   DOI
26 Y. Chen, K. Xie, C. Zheng, Z. Ma and Z. Chen, Appl. Mater. Interfaces, 2014, 6(19), 16888-16894.   DOI
27 D.J. Lee, B. Scrosati and Y.K. Suna, J.Power Sources., 2011, 196(18), 7742-7746.   DOI
28 H. J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233.   DOI
29 S.-H. Lee, C.S. Yoon, K. Amine and Y.-K. Sun, J. Power Sources., 2013, 234, 201-207.   DOI
30 Y. Cho and J. Cho, J. Electrochem. Soc., 2010, 157(6), A625-A629.   DOI
31 E. Zhao, X. Liu, H. Zhao, X. Xiao and Z. Hu, Chem. Commun., 2015, 51(44), 9093-9096.   DOI
32 K. Gao, S.X. Zhao, S.T. Guo, C.W. Nan, Electrochim. Acta., 2016, 206, 1-9.   DOI
33 G.T.-K. Fey, P. Muralidharan, C.-Z. Lu and Y.-D. Cho, Solid State Ionics, 2005, 176(37), 2759-2767.   DOI
34 H.J. Lee, K.S. Park and Y.J. Park, J. Power Sources, 2010, 195(18), 6122-6129.   DOI
35 S. Choi, J.B. Yoon, S. Muhammad and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 4(1), 34-40.   DOI
36 D. Jang, K. Palanisamy, Y. Kim and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 4(3), 102-107.   DOI
37 C.K. Lee and Y.J. Park, ACS Appl. Mater. Interfaces, 2016, 8(13), 8561-8567.   DOI
38 J.M. Kim, M. Jeong, B.S. Jin and H.S. Kim, J. Electrochem. Sci. Technol., 2014, 5(1), 32-36.   DOI
39 S.W. Kim and K.Y. Cho, J. Electrochem. Sci. Technol., 2015, 6(1), 10-15.
40 C.K. Lee and Y.J. Park, Chem. Commun., 2015, 51(7), 1210-1213.   DOI
41 D.H. Yoon, S.H. Yoon, K.S. Ryu and Y.J. Park, Scientific Reports, 2016, 6, 19962.   DOI
42 D. Jang, K. Palanisamy, J. Yoon, Y. Kim and W.S. Yoon, J. Power Sources, 2013, 244, 581-585.   DOI