• Title/Summary/Keyword: Agricultural Landscape

Search Result 769, Processing Time 0.031 seconds

The Estimation of Road Delay Factor using Urban Network Map and Real-Time Traffic Information (도로망도와 실시간 교통정보를 이용한 도로 지연계수 산정)

  • Jeon, Jeongbae;Kim, Solhee;Kwon, Sungmoon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • This study estimated the delay factor, which is the ratio of travel time at the speed limit and travel time at the actual speed using real-time traffic information in Seoul. The actual travel speed on the road was lower than the maximum speed of the road and the travel speed was the slowest during the rush hour. As a result of accessibility analysis based on travel speed during the rush hour, the travel time at the actual speed was 37.49 minutes on average. However, the travel time at the speed limit was 15.70 minutes on average. This result indicated that the travel time at the actual speed is 2.4 times longer than that at the speed limit. In addition, this study proposedly defined the delay factor as the ratio of accessibility by the speed limit and accessibility to actual travel speed. As a result of delay factor analysis, the delay factor of Seoul was 2.44. The results by the administrative district showed that the delay factor in the north part areas of the Han River is higher than her south part areas. Analysis results after applying the relationship between road density and traffic volume showed that as the traffic volume with road density increased, the delay factor decreased. These results indicated that it could not be said that heavy traffic caused longer travel time. Therefore, follow-up research is needed based on more detailed information such as road system shape, road width, and signal system for finding the exact cause of increased travel time.

A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images (MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구)

  • Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1035-1046
    • /
    • 2022
  • This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: I. Correction for Local Temperature under the Inversion Condition (기상청 동네예보의 영농활용도 증진을 위한 방안: I. 기온역전조건의 국지기온 보정)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.76-84
    • /
    • 2013
  • An adequate downscaling of the official forecasts of Korea Meteorological Administration (KMA) is a prerequisite to improving the value and utility of agrometeorological information in rural areas, where complex terrain and small farms constitute major features of the landscape. In this study, we suggest a simple correction scheme for scaling down the KMA temperature forecasts from mesoscale (5 km by 5 km) to the local scale (30 m by 30 m) across a rural catchment, especially under temperature inversion conditions. The study area is a rural catchment of $50km^2$ area with complex terrain and located on a southern slope of Mountain Jiri National Park. Temperature forecasts for 0600 LST on 62 days with temperature inversion were selected from the fall 2011-spring 2012 KMA data archive. A geospatial correction scheme which can simulate both cold air drainage and the so-called 'thermal belt' was used to derive the site-specific temperature deviation across the study area at a 30 m by 30 m resolution from the original 5 km by 5 km forecast grids. The observed temperature data at 12 validation sites within the study area showed a substantial reduction in forecast error: from ${\pm}2^{\circ}C$ to ${\pm}1^{\circ}C$ in the mean error range and from $1.9^{\circ}C$ to $1.6^{\circ}C$ in the root mean square error. Improvement was most remarkable at low lying locations showing frequent cold pooling events. Temperature prediction error was less than $2^{\circ}C$ for more than 80% of the observed inversion cases and less than $1^{\circ}C$ for half of the cases. Temperature forecasts corrected by this scheme may accelerate implementation of the freeze and frost early warning service for major fruits growing regions in Korea.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount (기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화)

  • Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation (자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구)

  • Kim, Hak-Jin;Ahn, Sung-Wuk;Han, Kyung-Hwa;Choi, Jin-Yong;Chung, Sun-Ok;Roh, Mi-Young;Hur, Seung-Oh
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Peeling Damage of Sapling caused by the Developing Process of Roe Deer Antlers in Warm-temperate Forests of Jeju Island (제주도 난대림에서 노루 뿔의 성장과정에 의한 어린나무 박피에 관한 연구)

  • Kim, Eun Mi;Park, Youngkyu;Kwon, Jino;Kim, Ji Eun;Kang, Chang Wan;Lee, Chi Bong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • Peeling damage of trees is usually caused by Cervidae such as deer, roe deer because of the lack of food in forests. However, it happens as part of the developing of antlers in Jeju Island when the roe deer try to remove the Velvet-the skin of the antlers. The research area is the Hannam experimental forest (400 m up to 500 m above sea level) of Korea Forest Research Institute in Jeju Island, and the survey was carried out along the 6 km long of forest road with 5 m width on both sides. Twenty five tree species (total 267 stands) are damaged by peeling; 18 (134 stands) deciduous broad-leaved species, 5 (71 stands) in evergreen broad-leaved species, 2 (62 stands) coniferous species. The most common damaged species are in order of Daphniphyllum macropodum, Cryptomeria japonica, Lindera erythrocarpa, Clerodendrum trichotomum, Zanthoxylum schinifolium. Mainly damaged trees are approximately 3~4 years old saplings, and they show the mean height $120.7{\pm}42.4cm$, diameter measured at 5 cm height $1.5{\pm}0.5cm$. The Lowest peeling beginning height is $22.1{\pm}10.1cm$, and the mean length of peeling is $27.5{\pm}10.6cm$. Once the peeling damage happens, the saplings are infected by fungi secondly, and are distorted or dead, therefore the future structure of warm-temperate forests could be in influenced in species. Warm-temperate forest landscape and species change related to the climate change is a rising issue in Jeju Island. However the changes caused by peeling damage also could be an important issue in the natural process of forest environment, afforestation, local nursery and sustainable forest management of Jeju Island.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.