DOI QR코드

DOI QR Code

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine -

최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작

  • Chung, U-Ran (Department of Ecosystem Engineering, Kyung Hee University,) ;
  • Kim, Soo-Ock (Department of Ecosystem Engineering, Kyung Hee University,) ;
  • Yun, Jin-I. (Department of Ecosystem Engineering, Kyung Hee University,)
  • 정유란 (경희대학교 생태시스템공학과) ;
  • 김수옥 (경희대학교 생태시스템공학과) ;
  • 윤진일 (경희대학교 생태시스템공학과)
  • Published : 2008.12.30

Abstract

This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

본 연구에서는 국가표준 시나리오 A1B와 A2 조건에서 예상되는 2071-2100 평년의 최저기온 예상도와, 휴면심도로부터 추정한 단기내동성 분포도에 근거하여, 남한 전역에 대해 사방 270m 간격으로 경관규모의 국지적인 동해위험 정도를 분석함으로써 현재 평년(1971-2000)에 비해 어떤 결과를 보일지 예측하고자 하였다. 실험에 필요한 270m 해상도의 일별 기온자료와 1월 최저기온자료는 농림수산식품부의 전자기후도 및 그 파생산물, 그리고 국립기상연구소의 기후시나리오자료를 이용하여 준비하였다. 대상작물로서 'Campbell Early' 포도를 선정하고 현재와 미래 평년에 대해 각각 휴면심도를 계산하여 비교한 결과, 단기내동성 유지면적(휴면심도 -150 이하)과 저온내습지역($-15^{\circ}$ 이하)은 두 가지 시나리오 모두 미래기후 조건에서 동시에 줄어들었다. 기온과 휴면심도 두 요인을 종합해 분석해보면 현재 평년에 비해 100년 후 미래 평년에 동해위험이 감소하는 지역은 증가하는 지역보다 더 늘어나므로 포도재배에 있어서 저온피해의 위협은 감소할 것이다. 하지만 피해율 30% 이하의 월동 안전지역의 면적이 현재 평년의 59%에서 미래에는 55% (A1B)${\sim}$63% (A2)로서 뚜렷이 증가하지 않으며, 피해율 70% 이상의 월동 위험지역의 면적은 오히려 현재 평년의 13%에서 미래에는 23% (A1B)${\sim}$25% (A2)로 크게 증가할 것으로 예측되었다. 본 연구에서 사용된 전자기후도에 근거한 동해위험도 분석기술은 국내 주요 과수품종에 적용할 수 있으므로 재배적지의 재배치 등 기후변화대과 수산업분야 적응전략 마련에 유용하게 쓰일 수 있을 것이다.

Keywords

References

  1. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126, 1-13 https://doi.org/10.1016/j.agrformet.2004.03.002
  2. Choi, J., U. Chung, and J. I. Yun, 2003: Urban effect correction to improve accuracy of spatially interpolated temperature estimates in Korea. Journal of Applied Meteorology 42, 1711-1719 https://doi.org/10.1175/1520-0450(2003)042<1711:UCTIAO>2.0.CO;2
  3. Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137, 15-24 https://doi.org/10.1016/j.agrformet.2005.12.011
  4. Chung, U., and J. I. Yun, 2008: A prospect on the changes in short-term cold hardiness in "Campbell Early" grapevine under the future warmer winter in South Korea. Korean Journal of Agricultural and Forest Meteorology 10, 94- 101. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.3.094
  5. Faust, M., 1989: Resistance of fruit trees to cold. In Physiology of Temperate Zone Fruit Trees. John Wiley and Sons, p307-331
  6. Howell, G. S. and C. J. Weiser, 1970: The environmental control of cold acclimation in apple. Plant Physiology 45, 390-394 https://doi.org/10.1104/pp.45.4.390
  7. Kwon, E. Y., G. C. Song, and J. I. Yun, 2005: Prediction of dormancy release and bud-burst in Korean Grapevine cultivars using daily temperature data. Korean Journal of Agricultural and Forest Meteorology 7, 185-191. (In Korean with English abstract)
  8. Kwon, E. Y., J. E. Jung, U. Chung, S. J. Lee, G. C. Song, D. G. Choi, and J. I. Yun, 2006: A thermal time - driven dormancy index as a complementary criterion for grapevine freeze risk evaluation. Korean Journal of Agricultural and Forest Meteorology 8, 1-9. (In Korean with English abstract)
  9. Kwon, E. Y., J. E. Jung, U. Chung, J. I. Yun, and H. S. Park, 2008: Using thermal time to simulate dormancy depth and bud-burst of vineyards in Korea for the 20th century. Journal of Applied Meteorology and Climatology 47, 1792-1801 https://doi.org/10.1175/2007JAMC1777.1
  10. Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology (Japan) 48, 379-383. (In Japanese with English abstract) https://doi.org/10.2480/agrmet.48.379
  11. Shim, K. M., J. T. Lee, Y. S. Lee, and G. Y. Kim, 2004: Reclassification of winter barley cultivation zones in Korea based on recent evidences in climate change. Korean Journal of Agricultural and Forest Meteorology 6, 218-234
  12. Yun, J. I., 2007: Applications of "High Definition Digital Climate Maps" in restructuring of Korean agriculture. Korean Journal of Agricultural and Forest Meteorology 9, 1-16 https://doi.org/10.5532/KJAFM.2007.9.1.001

Cited by

  1. Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: III. Identifying Freeze Risk Zones in the Future Using High-Definition Climate Scenarios vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.221
  2. Influence of Low Temperature and Chilling Time on Freezing Hardness of Apple Dwarf-rootstocks and Main Cultivars in Korea vol.16, pp.1, 2014, https://doi.org/10.5532/KJAFM.2014.16.1.59
  3. Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: I. Determination of Freezing Temperatures vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.206
  4. Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: II. Freezing Risk Index Based on Dormancy Depth as a Proxy for Physiological Tolerance to Freezing Temperature vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.213
  5. User-specific Agrometeorological Service to Local Farming Community: A Case Study vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.320
  6. Estimation of Duration of Low-temperature in Winter Season Using Minimum Air Temperature on January vol.14, pp.3, 2012, https://doi.org/10.5532/KJAFM.2012.14.3.119
  7. A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment vol.13, pp.4, 2011, https://doi.org/10.5532/KJAFM.2011.13.4.176