DOI QR코드

DOI QR Code

The Estimation of Road Delay Factor using Urban Network Map and Real-Time Traffic Information

도로망도와 실시간 교통정보를 이용한 도로 지연계수 산정

  • Jeon, Jeongbae (Korea Land and Geospatial Infomatix Corporation) ;
  • Kim, Solhee (College of Agricultural and Life Sciences, Seoul National University) ;
  • Kwon, Sungmoon (Division of Urban Landscape, Daegu University)
  • 전정배 (한국국토정보공사 공간정보연구원) ;
  • 김솔희 (서울대학교 농업생명과학대학) ;
  • 권성문 (대구대학교 공과대학 도시.조경학부)
  • Received : 2021.05.18
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

This study estimated the delay factor, which is the ratio of travel time at the speed limit and travel time at the actual speed using real-time traffic information in Seoul. The actual travel speed on the road was lower than the maximum speed of the road and the travel speed was the slowest during the rush hour. As a result of accessibility analysis based on travel speed during the rush hour, the travel time at the actual speed was 37.49 minutes on average. However, the travel time at the speed limit was 15.70 minutes on average. This result indicated that the travel time at the actual speed is 2.4 times longer than that at the speed limit. In addition, this study proposedly defined the delay factor as the ratio of accessibility by the speed limit and accessibility to actual travel speed. As a result of delay factor analysis, the delay factor of Seoul was 2.44. The results by the administrative district showed that the delay factor in the north part areas of the Han River is higher than her south part areas. Analysis results after applying the relationship between road density and traffic volume showed that as the traffic volume with road density increased, the delay factor decreased. These results indicated that it could not be said that heavy traffic caused longer travel time. Therefore, follow-up research is needed based on more detailed information such as road system shape, road width, and signal system for finding the exact cause of increased travel time.

본 연구는 도로의 실시간 교통정보를 이용하여 법정허용속도로 이동하는 시간과 실제속도로 이동하는 시간의 비율인 지연계수를 산정하였다. 연구의 대상지는 우리나라의 수도인 서울을 대상으로 하였다. 도로망의 실제 이용 속도는 대부분 최대속도보다 낮은 속도로 이용되는 것으로 조사되었으며, 이용 속도가 가장 낮은 시간은 출퇴근 시간대로 조사되었다. 조사된 출퇴근 시간대의 이용속도를 기반으로 접근성 분석을 수행한 결과 평균 37.94분이 소요되는 것으로 분석되었으며, 법정허용 속도에서는 15.70분으로 분석되어 약 2.4배 가량 과소평가되고 있는 것으로 나타났다. 이를 법정허용속도에 의한 접근성과 실제 이용속도 접근성 비율을 지연계수라 정의하고 분석을 수행한 결과 서울시의 지연계수는 2.44로 분석되었다. 행정구역별로 지연계수를 분석한 결과 한강을 중심으로 북쪽이 높고 남쪽이 상대적으로 낮은 지연계수를 보이는 것으로 분석되었다. 이를 도로밀도에 따른 통행량으로 비교한 결과 도로밀도에 따른 통행량이 증가할수록 지연계수가 감소하는 것으로 나타났다. 이는 통행량이 많다고 하여 반드시 이동시간이 증가하지 않는 것으로 볼 수 있으며, 이동시간의 증가를 유발하는 인자를 파악하기 위해서 향후에는 도로체계의 형상, 도로 폭, 신호체계 등 고도화된 정보를 기반으로 파악해야 할 것으로 보여진다.

Keywords

References

  1. Intelligent Transport System(ITS). 2020. Ministry of Land, Infrastructure, and Transport(MLIT). http://www.its.go.kr/
  2. Kim TG, Shin YH, Lee JM, Suh K. 2013. Calculation of Regional Circuity Factors using Road Network Distance in South Korea. Journal of Korea Planning Association. 48(4):319-329.
  3. Joo SM, Lee KH, Choi JH. 2012. To Identify the Vulnerable Areas of Emergency Medical Services for Daegu City in 2012. Journal of Daegu Gyeongbuk Development Institute. 11(1): 1-9.
  4. Cho KS, Hong SS, Yoon JC. 2014. Distriction-based Map Visualization for Presenting Traffic Network Structure. KIISE T Transaction on Computong Practices. 20(4):253-256.
  5. Jeon JB, Park MJ, Jang DD, Lim CS, Kim EJ. 2018. Vulnerable Analysis of Emergency Medical Facilities based on Accessibility to Emergency Room and 119 Emergency Center. Journal Of The Korean Society Of Rural Planning. 24(4): 147-155. https://doi.org/10.7851/Ksrp.2018.24.4.147
  6. Brimberg, J, Love, R. F. and Walker, J. H. 1995. The Effect of Axis Rotation on Distance Estimation. European Journal of Operational Research. 80(2):357-364. https://doi.org/10.1016/0377-2217(93)E0296-A
  7. Feng, B., Xu, J., Zhang, Y. and Lin, Y. 2021. Multi-Step Traffic Speed Prediction Based on Ensemble Learning on an Urban Road Network. Applied Sciences, 11(10): 4423. https://doi.org/10.3390/app11104423
  8. Francis, R. L., and J. M. Goldstein. 1974. Location theory: A selective bibliography. Operations Research. 22(2):400-410. https://doi.org/10.1287/opre.22.2.400
  9. Gmira, M. Gendreau, M. Lodi, A. and Potvin, J. Y. 2021. Tabu Search for the Time-Dependent Vehicle Routing Problem with Time Windows on a Road Network. European Journal of Operational Research. 228(1):129-140.
  10. Jeon, JB. Kim, SH. Kang, GH. and Suh, K. 2020. Analysis of Emergency Medical Vulnerability and Survival Rates Following Real-Time Traffic Information. Applied Sciences, 10(18): 6492. https://doi.org/10.3390/app10186492
  11. Love, R. F. and Morris, J. G. 1972. Modelling Inter-city Road Distances by Mathematical Functions. Operational Research Quarterly. 23(1):61-71. https://doi.org/10.2307/3008514
  12. O'Sullivan, S. and Morrall, J. 1996. Walking Distances to and from Light-rail Transit Stations. Transportation Research Record: Journal of the Transportation Research Board. 1538:19-26. https://doi.org/10.1177/0361198196153800103
  13. Ronald, H. B. Handoko, R. and Noriaki, S. 2002. Selected Country Circuity Factors for Road Travel Distance Estimation. Transportation Research Part A: Policy and Practice. 36(9): 843-848. https://doi.org/10.1016/S0965-8564(01)00044-1
  14. Wesolowsky, G. O. 1973. Location in Continuous Space. Geographical Analysis. 5(2):95-112. https://doi.org/10.1111/j.1538-4632.1973.tb01000.x