DOI QR코드

DOI QR Code

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation

자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구

  • Kim, Hak-Jin (Dept. of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Ahn, Sung-Wuk (Dept. of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Han, Kyung-Hwa (Dept. of Agricultural Environment, National Academy of Agricultural Science) ;
  • Choi, Jin-Yong (Dept. of Landscape and Rural Systems Engineering, Seoul National University) ;
  • Chung, Sun-Ok (Dept. of Biosystems Machinery Engineering, Chungnam National University) ;
  • Roh, Mi-Young (R&D Coordination Division, Rural Development Administration) ;
  • Hur, Seung-Oh (Research Policy Planning Division, Rural Development Administration)
  • 김학진 (서울대학교 바이오시스템소재학부) ;
  • 안성욱 (서울대학교 바이오시스템소재학부) ;
  • 한경화 (국립농업과학원 농업환경부) ;
  • 최진용 (서울대학교 조경지역시스템공학부) ;
  • 정선옥 (충남대학교 바이오시스템기계공학과) ;
  • 노미영 (농촌진흥청 연구운영과) ;
  • 허승오 (농촌진흥청 연구정책과)
  • Received : 2013.08.28
  • Accepted : 2013.10.21
  • Published : 2013.12.31

Abstract

Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

본 연구에서는 토성에 따른 물의 이용효율을 높이면서 재배 작물의 생산성을 최대화하기 위한 효율적인 자동관개 로직을 개발하고자, 수분장력값을 관수 개시점으로 하여 물 공급 유지와 멈춤을 간헐적으로 수행하는 펄스형 관개방식과 측정한 수분장력값을 이용하여 토양수분량을 예측해 재배작물에 적합한 물량을 추가 투입하는 필요물량계산 관수방식을 적용하여 토성이 다른 실험베드에서 2년간 토마토 작물을 재배하면서 토양수분 함량과 장력의 변화를 측정비교하였다. 물공급 30초와 멈춤 30분 및 15분 조건을 이용한 펄스형 관수방식과 필요물량계산 방식에서 얻어진 수분장력값은 목표한 -20kPa 조건에 비해 각각 -42~-8kPa, -20~-10kPa로 나타나 필요물량 계산방식이 균일한 수분장력을 유지하는 측면에서는 유리하였으나 토양수분상태는 상대적으로 습하였다. 공시 토성 모두에서 수분함량은 수분장력에 비해 시간반응이 빠르면서 물공급에 따라 비례적으로 증가하는 경향이 뚜렷하였다. 수분변화 값은 펄스형 관수와 필요물량계산 관수방식의 경우 사양토 기준으로 각각 17~24%, 19~31%로서 펄스형 관수방식이 수분변화 값이 작으면서 시간에 따라 안정적인 값을 유지한 것으로 나타났는데 이는 물공급에 따른 수분함량의 시간변화가 수분장력에 비해 뚜렷하게 빠름과 관계가 있는 것으로 판단하였다. 이러한 결과로부터 펄스형 관수방식은 수분함량값을 이용하여 수분을 조절하는 것이 유리함을 의미한다.

Keywords

References

  1. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper no. 56. FAO, Rome, Italy.
  2. Fares, A. and A.K. Alva. 2000a. Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrig. Sci 19:57-64. https://doi.org/10.1007/s002710050001
  3. Fares, A. and A.K. Alva. 2000b. Soil water components based on capacitance probes in a sandy soil. Soil Sci. Soc. Am. J. 64:311-318. https://doi.org/10.2136/sssaj2000.641311x
  4. Hansen, R.C. and C.C. Pasian. 1999. Using tensiometers for precision microirrigation of container-grown roses. Appl. Eng. Agric. 15(5):483-490. https://doi.org/10.13031/2013.5807
  5. Hur, S.O. 2007. Application of soil moisture theory for irrigation, p. 25-49. In: Song, K.C. (ed). Water Management Method for Effective Use of Agricultural Water. Suwon: NIAST (in Korean).
  6. Hur, S.O., S.K. Ha, and J.G. Kim. 2009. Verification of TDR and FDR sensors for volumetric soil water content measurement in sandy loam soil. Korean J. Soil Sci. Fert. 42(2):110-116 (in Korean).
  7. Kim, H.J., D.W. Son, S.O. Hur, M.Y. Roh, K.Y. Jung, J.M. Park, J.Y. Rhee, and D.H. Lee. 2009. Comparison of wetting and drying characteristics in differently textured soils under drip irrigation. J. Bio-Env. Cont. 18(4):309-315 (in Korean).
  8. Kim, H.J., M.Y. Roh, D.H. Lee, S.H. Jeon, S.O. Hur, J.Y. Choi, S.O. Chung, and J.Y. Rhee. 2011. Feasibility test on automatic control of soil water potential using a portable irrigation controller with an electrical resistance-based watermark sensor. J. Bio-Env. Cont. 20(2): 93-100 (in Korean).
  9. Lea-Cox, J.D. 2012. Using wireless sensor networks for precision irrigation scheduling, p. 233-258. In: M. Kumar (ed). Problems, perspectives and challenges of agricultural water management. InTech.
  10. Lee, D.H., K.S. Lee, and Y.C. Chang. 2008. Development of an automatic water control system for greenhouse soil water content management. J. of Biosystems Eng. 33(2):115-213 (in Korean). https://doi.org/10.5307/JBE.2008.33.2.115
  11. Smajstrla, A.G. and S.J. Locascio. 1996. Tensiometer-controlled, drip-irrigatino scheduling of tomato. Appl. Eng. Agric. 12(3):315-319. https://doi.org/10.13031/2013.25654