• Title/Summary/Keyword: Aging heat treatment

Search Result 313, Processing Time 0.025 seconds

Effect of Yanggyuksanhwa-tang on Pyramidal Neuron and HSP72 Expression in Ischemic Damaged Hippocampus of Aged BCAD Rats (노령 흰쥐의 뇌허혈 손상시 양격산화탕이 뇌해마의 신경세포 및 HSP72 발현에 미치는 영향)

  • Park Eun Kyung;Shin Jung Won;Sohn Young Joo;Jung Hyuk Sang;Won Ran;Sohn Nak Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.791-797
    • /
    • 2003
  • This study investigated the effect of Yanggyuksanhwa-tang on cerebral ischemia of the rats. Considering age-related impact on cerebral ischemia, aged rats (18 months old) were used for this study. Ischemic damage was induced by the transient occlusion of bilateral common carotid arteries (BCAO) under the hypotension. Yanggyuksanhwa-tang was administered twice orally. Then changes of pyramidal neurons and heat shock protein 72 (HSP72) expressions in ischemic damaged hippocampus were of observed. The BCAO in aged rats led significant decrease of pyramidal neurons in CA1 hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the reduction of pyramidal neurons in CA1 hippocampus following BCAO ischemia. The BCAO in aged rats led significant increase of HSP72 expression in CA1 and mild in CA3 hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of HSP72 expression in CA1 hippocampus following BCAO ischemia. The extent of HSP72 expression in CA2 and DG of hippocampus was not different between the sham operated group, the BCAO ischemia control group, and the group of Yanggyuksanhwa-tang administration after BCAO ischemia. The treatment of Yanggyuksanhwa-tang significantly attenuated the increase of normalized optical density depending on HSP72 expression in CA1 hippocampus following BCAO ischemia.

Manufacture of $BaTiO_3$ Powders by Gel-hydrothermal Method (겔의 수열합성법에 의한 다공성 구형 $BaTiO_3$ 미분체의 제조)

  • Kim, Yong-Ryul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.306-314
    • /
    • 2005
  • In this study, spherical $pre-BaTiO_3$ particles are prepared by gelation and aging process in autoclave without catalysts. The (Ba-Ti) gel used as a starting material was prepared by aging mixtures of titanyl acylate with barium acetate aqueous solution([glacial acetic acid (AcOH)]/[titanium isopropoxide (TIP)] 4, [barium acetate]/[TIP] 1) at $45^{\circ}C$ for 48hrs. XRD and SEM results for the (Ba-Ti) gel sample at aging process showed that the gel was formed via aggregation of the fine particles. It seems to be the primary particles of bulk (Ba-Ti) gel amorphous, but the spatial arrangement of barium and titanium in the (Ba-Ti) gel is similar to that in crystalline $BaTiO_3$ particles. From XRD and FT-IR. spectroscopy analysis it was found that the crystal structure of the prepared particles continuously transformed from amorphous to tetragonal as the calcination temperature increased, and crystallized spherical cubic and tetragonal $BaTiO_3$ powder obtained at the very low calcination temperature between $500^{\circ}C$ and $900^{\circ}C$ after 1hrs of heat treatment respectively. According to BET analysis result, final particle have pore structure of ink bottle shape which is produced by aggregation of fine spherical particles with surface area of $280m^2/g$ and average pore size of 130nm.

A Study on Hot Ductility Behavior of Ni-based Superalloys (니켈기 초내열합금의 고온연성거동에 관한 연구)

  • Lee, Choung-Rae;Um, Sang-Ho;Kim, Sung-Wook;Choi, Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2004
  • Plasma transferred arc welding (PTAW) has been taken into consideration for repairing Ni-based superalloy components used gas turbine blades. Various cracks has been generally reported to be found in the base metal heat affected zone(HAZ) along grain boundary. Thus, hot cracking susceptibility of Ni-based superalloys was evaluated according to heat treatments. Hot ductility test was conducted on specimens with solution treated at 112$0^{\circ}C$ for 2 hours and aging treated at 845$^{\circ}C$ for 24hours after solution treatment. The results of the hot ductility test appeared that solution treated specimens were the highest ductility recovery rate among three conditions. The loss of ductility at high temperature in Ni-based superalloy was mainly controlled by the degree of pain boundary wetting due to constitutional liquation of MC carbide precipitates. Meanwhile, the highest ductility recovery rate in solution-treated alloys seems to be lack of M23C6, which can be dissolved during heating and then result in the local enrichment of Cr in the vicinity of the grain boundary.

The strain measurement on the aluminum alloy welded transition joint (알루미늄 合金 異材熔接部의 變形率測定)

  • 옹장우;전제춘;오상진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.625-634
    • /
    • 1986
  • The strain distribution on a welded aluminum alloy transition joint produced by a static tensile load has been measured using a moire method combined with photoelastic coating method. The test specimens were made of aluminum alloy 6061-T6 and 2014-T6 butt welded with ER-4043 filler metal, and were post welded heat treated (solid solution heat treatment 502.deg. C 70min.) and precipitated (artificial aging 171.deg. C 600min.) to cause an abrupt change of mechanical properties between the base metals and weld metal. The photoelastic epoxy rubber was cemented on the specimen grating which had been reproduced on the specimen surface by using an electropolishing. The measurements were compared with strains computed by Finite Element Analysis. The following results were abtained. (1) The maximum strain were distributed along the center line in the transverse directiion of the weld metal. (2) The strain gradient along the fusion line increased approaching the V-groove tip and the maximum value was observed at a quarter of width from the V-groove tip. (3) The moire method combined with photoelastic coating was proved very useful for real time strain measurement in the welded aluminum alloy transition joint.

A Study on Theoretical Background Relationship of Blood Vessel Pressure Massage and Skin and Management Method of Blood Vessel Pressure Massage for Skin Care (피부미용과 관련된 한방미용경락의 이론적 배정 연구)

  • Choi, Jong-Mi;La, Young-Sun
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.2 no.1 s.1
    • /
    • pp.5-13
    • /
    • 2004
  • This study was analyzed on relationship of blood vessel pressure massage and skin and management method on blood vessel pressure for skin care with Yin-yang 5 factors theory, Yin-yang 5 factors theory of blood vessel pressure massage with related Korean medicine is essential for descriptions of the physiology of human body and disease. Six elements(wind, heat, fire, dryness, wetness, and cold) and seven emotions(anger, happiness, thought, worry, sadness, surprise, and fear) effected on skin care and the five viscera and the six stomach. Blood vessel pressure massage related with skin consists of the five viscera and the six stomach and is improved blood circulation and is retarded aging of skin by controls of hormone and free nerve system. Blood vessel pressure massage for skin care improved in the intestine system and blood circulation and got healthy. The blood vessel pressure massage treatment of beauty art can aid the function of bio-rhythm of a human body and make our body health by healing the problems of the five viscera organs and the six stomach. It also help circulate of the blood flow and vigor. The study expects the related researches to improve the various treatments through this treatment. The researcher encountered many problems with the lack of concerned materials and former studies but expects this study to be a study to retard aging the skin and prevent the diseases through the study of the blood vessel pressure massage.

  • PDF

Bending Impact Properties Evaluation of Sn-xAg-Cu Lead Free Solder Composition and aging treatment (시효처리한 Sn-xAg-Cu계 무연솔더 조성에 따른 굽힘충격 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • The failure of electronic instruments is mostly caused by heat and shock. This shock causes the crack initiation at the solder joint interface of PCB component which is closely related with the formation of intermetallic compound(IMC). The Ag content in Pb-free Sn-xAg-0.5Cu solder alloy used in this study was 1.0, 1.2 and 3.0 wt.%, respectively. After soldering with PCB component, isothermal aging was performed to 1000 hrs. The growth of IMC layer was observed during isothermal aging. The drop impact property of solder joint was evaluated by impact bending test method. The solder joint made with the solder containing lower Ag content showed better impact bending property compared with that with higher Ag content. On the contrary to this result, the solder joint made with solder containing higher Ag content showed better impact bending property after aging. It should be caused by the formation of fine $Ag_3Sn$, which relieved the impact. It showed consequently the different effect of fine $Ag_3Sn$ and coarse $Cu_6Sn_5$ particles formed in the IMC layer on the impact bending property.

Fabrication Process of Laminated Composites by Self-propagating High-temperature Synthesis Reaction (자전고온반응에 의한 적층복합재료의 제조공정)

  • 김희연;정동석;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.155-158
    • /
    • 2002
  • Fabrication process of metal/intermetallic laminated composites by using self-propagating high temperature synthesis(SHS) reactions between Ni and Al elemental metal foils have been investigated. Al foils were sandwiched between Ni foils and heated in a vacuum hot press to the melting point of aluminium. SHS reaction kinetics was thermodynamically analyzed through the final volume fraction of the unreacted Al related with the initial thickness ratio of Ni:Al and diffusion bonding stage before SHS reaction. Thermal aging of laminated composites resulted in the formation of functionally gradient series of intermetallic phases. Microstructure showed that the main phases of intermetallics were NiAl and $Ni_3Al$ having higher strength at room and high temperatures. The volume fractions of intermetallic phases were measured as 82.4, 58.6, 38.4% in 1:1, 2:1, 4:1 initial thickness ratio of Ni:Al.

  • PDF

DC Potential Drop Method for Evaluating Material Degradation

  • Seok, Chang-Sung;Bae, Bong-Kook;Koo, Jae-Mean
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1368-1374
    • /
    • 2004
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with in-service exposure time in high temperatures. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to evaluate the degradation. In this study, test materials with several different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. The DC potential drop method and destructive methods such as tensile and fracture toughness were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. In this result, we can see that tensile strength and fracture toughness can be calculated from resistivity and it is possible to evaluate material degradation using DC potential drop method, non-destructive method.

Mitochondria Medicine and its Research Trend (미토콘드리아 의학과 연구동향)

  • Shim, E.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.355-361
    • /
    • 2009
  • Mitochondria play a key role in maintaining life by producing ATP and heat. Recent researches have demonstrated that degenerative diseases such as heart failure, obesity/diabetes, cardiovascular disease, and psychiatric diseases are accompanied by mitochondria dysfunction. In this sense, mitochondria medicine considers the significance of mitochondria in human pathology and tries to explain degenerative diseases as a fatal consequence of mitochondria dysfunction. Here, I introduce the fundamentals of mitochondria physiology and present examples showing the relationship between mitochondria dysfunction and chronic complex diseases. Although mitochondria medicine uses a molecular biological approach predominantly, a biomedical engineering approach might play a critical role in unveiling the complexity of mitochondria medicine and in its application to the diagnosis and treatment of chronic diseases. Thus, I also briefly review the prospects of research using biomedical engineering methods.

A Study on the Evaluation of Material Degradation for 2.25Cr-1Mo Steel by Ultrasonic Measurements (초음파 계측에 의한 2.25Cr-1Mo강의 열화도 평가에 관한 연구)

  • 박은수;박익근;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • The remaining life estimation for the aged component is very important because mechanical properties of the compo-nents are degraded with time of service exposure in high temperature etc. The destructive method is widely used for the estimation of material degradation, but it has a difficulty in preparing specimens from in-service industrial facilities. In order to evaluate the feasibility of ultrasonic evaluation method for properties of high temperature materials, 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at 63$0^{\circ}C$ were evaluated by ultra-sonic measurements investigating the change of velocities and attenuation coefficient. In this results, attenuation coefficient was found to be sensitive to material degradation mainly attributed to the change of grain size and the precipitation of impurities in grain boundaries, but velocity was not for all specimens.

  • PDF