Browse > Article
http://dx.doi.org/10.12925/jkocs.2005.22.4.2

Manufacture of $BaTiO_3$ Powders by Gel-hydrothermal Method  

Kim, Yong-Ryul (Department of Chemical Engineering, DaeJin University)
Publication Information
Journal of the Korean Applied Science and Technology / v.22, no.4, 2005 , pp. 306-314 More about this Journal
Abstract
In this study, spherical $pre-BaTiO_3$ particles are prepared by gelation and aging process in autoclave without catalysts. The (Ba-Ti) gel used as a starting material was prepared by aging mixtures of titanyl acylate with barium acetate aqueous solution([glacial acetic acid (AcOH)]/[titanium isopropoxide (TIP)] 4, [barium acetate]/[TIP] 1) at $45^{\circ}C$ for 48hrs. XRD and SEM results for the (Ba-Ti) gel sample at aging process showed that the gel was formed via aggregation of the fine particles. It seems to be the primary particles of bulk (Ba-Ti) gel amorphous, but the spatial arrangement of barium and titanium in the (Ba-Ti) gel is similar to that in crystalline $BaTiO_3$ particles. From XRD and FT-IR. spectroscopy analysis it was found that the crystal structure of the prepared particles continuously transformed from amorphous to tetragonal as the calcination temperature increased, and crystallized spherical cubic and tetragonal $BaTiO_3$ powder obtained at the very low calcination temperature between $500^{\circ}C$ and $900^{\circ}C$ after 1hrs of heat treatment respectively. According to BET analysis result, final particle have pore structure of ink bottle shape which is produced by aggregation of fine spherical particles with surface area of $280m^2/g$ and average pore size of 130nm.
Keywords
$BaTiO_3$; barium acetate; gelation; calcination temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Yoko, K. Kamiya, and K. Tanaka, Preparation of Multiple Oxide $BaTiO_3$ Fibres by the Sol-Gel method, J. Mater. Sci., 25, 3922 (1990)
2 J. A. Davies and A. Dutremez, Electroceramics from Source Materials via Molecular Intermediates: $BaTiO_3\;from\;TiO_2\;{[Ti(catecholate)_3]}^{2-}$, J. Am. Ceram. Soc., 73, 1429 (1990)   DOI
3 W. S. Cho, Structural Evolution and Characterization of $BaTiO_3$ Nanoparticles Synthesized from Polymeric Precursor, J. Phys. Chem. Solids, 59, 659 (1998)
4 W. Maison, R. Kleeberg, R. B. Heimann, and S. Phanichphant, Phase content, Tetra-gonality, and Crystallite Size of Nanoscaled Barium Titanate Synthesized by the Catecholate Process : Effect of Calcinations Temperture, J. Eur. Ceram. Soc., 23, 127 (2003)
5 D. P. Birnie, Esterification Kinetics in Titanium Isoproroxide- Acetic Acid Solutions. J. Mater. Sci., 35, 367 (2000)
6 T. S. Her, E. Matijevic, and M. C. Chon, Controlled Double-Jet Precipitation' of Uniform Colloidal Cryatalline Sr- and Zr-doped Barium Titanates, J. Mater. Res., 11, 3121 (1996)
7 E. Ciftci, M. N. Rahaman, and M. Shumsky, Hydrothermal Precipitation and Characterization of nanocrystalline $BaTiO_3$ particles, J. Mater. Sci., 36, 4875 (2001)
8 P. Duran, D. Gutierrez, J. Tartaj, M. A. Banares, and C. Moure, On the Formation of an Oxycarbonate Intermediate Phase in the Synthesis of $BaTiO_3$ from (Ba, Ti Polymeric Organic Precursors, J. Eur. Ceram. Soc., 22, 797 (2002)
9 I. J. Clark, T. Takeuchi, N. Ohtori, and D. C. Sinclair, Hydrothermal Synthesis and Characterization of $BaTiO_3$ Fine Powders: Precursors, Polymorphism and Properties, J. Mater. Chem., 9, 83 (1999)
10 H. B. Sharma, and A. Mansingh, Sol-Gel Processed Barium Titanate Ceramics and Thin Films, J. Mater. Sci., 33, 4455 (1998)
11 C. P. Kao and W. D. Yang, Preparation and Electrical Properties of Fine Strontium Titanate Powder from Titanium Alkoxide in a Strong Alkaline Solution, Mater. Sci. Eng. B., 38, 127 (1996)
12 N. W. Alock, V. M. Tracy, and T. C. Waddington, Acetates and Acetato Complexes. Part 2. Spectroscopic Studies, J. Chem. Soc., Dalton Trans.,46, 2243 (1976)
13 S. W. Lu, B. I. Lee and L. A. Mann, Carbonation of Barium Titanate Powders Studied by FT-IR Technique. Mater. Lett., 43, 102 (2000)
14 P. P. Phule and S. H. Risbud, Low-Temperature Synthesis and Processing of Electronic Material in the BaO-$TiO_2$ System, J. Mater. Sci., 25, 1169 (1990)
15 N. W. Alcock and V. M. Tracy, Acetates and Acetate-complexes, J. Ceram Soc. Dalton., 2243 (1976)
16 M. T. Buscaglia, V. Buscaglia, M. Viviani, and P. Nanni, Atomistic Simulation of Dopant Incorporation in Barium Titanate, J. Am Ceram Soc., 84 2 376 (2001)
17 S. Brunauer, L. S. Deming, W. A. Deming, and E. Tell, On a Theory of the Van der Walls Adsorption Gases. J. Amer. Chem. Soc., 62, 1723 (1940)
18 U. Y. Hwang, U. S. Chae, S. G. Kim, J. W. Lee, H. S. Park, S. J. Yoo, H. S. Yoon, and Y. R. Kim, The Study on the Reaction Mechanism of Titanium Isopropoxide with Acetic Acid. Theories and Applications of Chem. Eng., 8(2), 3833 (2002)
19 D. Hennings and S. Schreinemacher, Characterization of Hydrothermal Barium Titanate, J. Eur. Ceram Soc., 9, 41 (1992)
20 P. Gherardi and E. Matijevic, Homogeneous Precipitation of Spherical Colloidal Barium Titanate Particles, Colloids Surf., 32, 257 (1988)
21 J. D. Freire and R. S. Katiyar, Lattice Dynamics of Crystals with Tetragonal $BaTiO_3$ Structure. Phys. Rev. B., 37(4), 2074 (1988)
22 S. Bhattacharjee, M. K. Paria, and S. H. Maiti, Occurrence of Excess Titania in Strontium Titanate Prepared by the Oxalate Precipitation Route, Ceram. Int., 18, 295 (1992)
23 E. Sanchea, T. Lopez, R. Gomea, A. Morales, and O. Novara, Synthesis and Characterization of Sol.Gel Pt/$TiO_2$ Catalyst. J. Solid State Chem., 122, 309 (1996)