• Title/Summary/Keyword: Aerosol-deposition process

Search Result 59, Processing Time 0.024 seconds

Application and Functionalization of Graphene Oxide on Cotton Fabric Via Aerosol Spray Pyrolysis (그래핀 옥사이드의 에어로졸 분무열분해 공정을 통한 면직물의 전기전도성 및 물성 평가)

  • Ohm, Hyunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.138-145
    • /
    • 2022
  • Today, graphene loaded textiles are being considered promising smart clothing due to their high conductivity. In this study, we reported reduced graphene oxide(r-GO) deposited pure cotton fabrics fabricated with a colloidal solution of graphene(GO), using a one-step aerosol spray pyrolysis(ASP) process and their potential application on smart textiles. The ASP process is advantageous in that it is easily implementable and can be applied for continuous processing. Moreover, this process has never been applied to deposit r-GO on pure cotton fabric. The field emission-scanning microscopy (FE-SEM) observation, Fourier transform-infrared(FT-IR) analysis, Raman spectroscopy, X-ray diffraction(XRD) analysis, and ultraviolet transmittance(UVT) were used to evaluate material properties of the r-GO colloids. The resistance was also measured to evaluate the electrical conductivity of the specimens. The results revealed that the r-GO was successfully deposed on specimens, and the specimen with the highest electrical conductivity demonstrated an electrical resistance value of 2.27 kΩ/sq. Taken together, the results revealed that the ASP method demonstrated a high potential for effective deposition of r-GO on cotton fabric specimens and is a prospect for the development of conductive cotton-based smart clothing. Therefore, this study is also meaningful in that the ASP process can be newly applied by depositing r-GO on the pure cotton fabric.

High Temperature Grain Growth Behavior of Aerosol Deposited BaTiO3 Film on (100), (110) Oriented SrTiO3 Single Crystal (상온분사분말공정에 의해 SrTiO3 (100), (110) Seed에 코팅된 BaTiO3의 고온 성장 거동 분석)

  • Lim, Ji-Ho;Lee, Seung Hee;Kim, Ki Hyun;Ji, Sung-Yub;Jung, Suengwoon;Park, Chun-kil;Jung, Han-Bo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.684-689
    • /
    • 2019
  • Single crystals, which have complexed composition, are fabricated by solid state grain growth. However, it is hard to achieve stable properties in a single crystal due to trapped pores. Aerosol deposition (AD) is suitable for fabrication of single crystals with stable properties because this process can make a high density coating layer. Because of their unique features (nano sized grains, stress inner site), it is hard to fabricate single crystals, and so studies of grain growth behavior of AD film are essential. In this study, a $BaTiO_3$ coating layer with ${\sim}9{\mu}m$ thickness is fabricated using an aerosol deposition method on (100) and (110) cut $SrTiO_3$ single crystal substrates, which are adopted as seeds for grain growth. Each specimen is heat-treated at various conditions (900, 1,100, and $1,300^{\circ}C$ for 5 h). $BaTiO_3$ layer shows different growth behavior and X-ray diffraction depending on cutting direction of $SrTiO_3$ seed. Rectangular pillars at $SrTiO_3$ (100) and laminating thin plates at $SrTiO_3$ (110), respectively, are observed.

An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition (수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석)

  • Lee, Bang Weon;Park, Kyong Soon;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Fabrication and Characterization of Hybrid NTC Thermistor Films with Conducting Oxide Particles by an Aerosol-Deposition Process (상온 분사 공정에 의한 산화물전도 입자 복합 하이브리드 NTC 서미스터 필름의 제작 및 특성)

  • Kang, Ju-Eun;Ryu, Jungho;Choi, Jong-Jin;Yoon, Woon-Ha;Kim, Jong-Woo;Ahn, Cheol-Woo;Choi, Joon Hwan;Park, Dong-Soo;Kim, Yang-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Negative-temperature coefficient (NTC) thermistors based on nickel manganite spinel ($NiMn_2O_4$) are widely used for many applications, such as sensors and temperature compensators, due to their good thermistor characteristics and stabilities. However, to achieve thermistors with a high NTC B constant, which is an important figure of merit pertaining to the degree of temperature sensitivity, the activation energy should be high such that high resistivity at ambient temperatures results. To obtain a high B constant and low resistivity, Al and Si modified spinel structured $Ni_{0.6}Si_{0.2}Al_{0.6}Mn_{1.6}O_4$ hybrid thick films with the conducting metal oxide of $LaNiO_3$ were fabricated on a glass substrate by aerosol deposition at room temperature (RT). The NTC-$LaNiO_3$ hybrid thick films showed resistivity as low as < $100k{\Omega}\;cm$ at $90^{\circ}C$, which is one or two orders of magnitude lower than that of the monolithic NTC films, while retaining a high B constant of $NiMn_2O_4$ of over 5500 K when 20 wt% $LaNiO_3$ was added without a post-thermal treatment. These phenomena are explained by the percolation threshold mechanism.

Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition (상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가)

  • Baek, Chang-Woo;Han, Gui-fang;Hahn, Byung-Dong;Yoon, Woon-Ha;Choi, Jong-Jin;Park, Dong-Soo;Ryu, Jung-ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.277-282
    • /
    • 2011
  • Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of $Ni_{1+x}Mn_{2-x}O_{4+{\delta}}$ (x = 0.05, 0, -0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between $25^{\circ}C$ and $85^{\circ}C$ without heat treatment. When the film was annealed at $600^{\circ}C$ 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at $600^{\circ}C$ for 1 h were 5.203, 5.95, and 4.772 $K{\Omega}{\cdot}cm$ and 351, 326, and 299 meV for $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$, $NiMn_2O_4$, and $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$, respectively. The annealing process induced insulating $Mn_2O_3$ in the Ni deficient $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$ suppressed the abnormal grain growth and changed $Mn^{3+}$ to $Mn^{4+}$, giving lower resistivity and activation energy.

Effect of Film Thickness on the Photocatalytic Performance of TiO2 Film Fabricated by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사공정에 의해 제조된 TiO2 광촉매 막의 두께변화에 따른 광촉매 특성)

  • Kim, Kun-Young;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byoung-Kuk;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.839-844
    • /
    • 2008
  • $TiO_2$ is an environment-friendly semiconducting material, and it has photocatalytic and hydrophilic effect. There are a lot of reports on the photocatalytic characteristics of $TiO_2$, such as organic pollutants resolving, anti-bacterial, and self-purification material. In this paper, $TiO_2$ micron-sized powders were deposited on the glass by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $TiO_2$ photocatalytic thin films were fabricated. The thickness of the films were controlled by changing the number of deposition cycle. Morphologies and characteristics of the AD-$TiO_2$ thin films were examined by SEM, TEM, XRD, and UV-Visible Spectrophotometer. As the thickness of $TiO_2$ films increased, surface roughness increased. By this increment, the reaction area between film and pollutant was enlarged, resulting in better photocatalytic property.

Improvement in Dielectric Properties of Aerosol-Deposited $Al_2O_3$-polyimide Composite Thick Films through Heat Treatment (에어로졸데포지션법으로 성막된 $Al_2O_3$-polyimide 복합체 후막의 열처리를 통한 유전특성 향상)

  • Kim, Hyung-Jun;Park, Jae-Chang;Yoon, Young-Joon;Kim, Jong-Hee;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.224-224
    • /
    • 2008
  • 고주파용 집적회로 기판소재로의 응용을 위해 세라믹 특유의 취성을 개선한 $Al_2O_3$-polyimide 복합체 후막을 에어로졸데포지션법을 이용해 제조하고 그 특성을 평가하였다. 그 결과 기공이 거의 없이 치밀한 구조를 갖는 $Al_2O_3$-polyimide 복합체 후막이 구리 및 유리 기판 상에 성막 되었음이 SEM 및 EDS을 통해 확인되었다. 상용 $Al_2O_3$ 출발 파우더를 사용한 복합체 제조시 1 MHz에서 유전율은 6.7, 유전 손실률은 0.026 이었다. 유전특성의 향상을 위하여 에어로졸데포지션법으로 성막된 $Al_2O_3$-polyimide 복합체 후막의 후속 열처리 결과 유전손실율이 0.026에서 0.007로 감소하였다. 또한 집적회로 기판소재로의 응용을 위한 저온화 제조공정 확립을 위하여 $Al_2O_3$ 출발 파우더의 공정 전 열처리 후 상온에서 성막한 경우에도 어떠한 후속 열처리 없이 유전손실률이 0.007로 감소하였다.

  • PDF