DOI QR코드

DOI QR Code

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications

비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발

  • Park, Tae-Ung (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Ik-Soo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Min-Ji (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Park, Chulhwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Seo, Eui-kyoung (Division of Law, Kwangwoon University) ;
  • Oh, Jong-Min (Department of Electronic Materials Engineering, Kwangwoon University)
  • 박태웅 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김익수 (광운대학교 전자재료공학과) ;
  • 김민지 (광운대학교 전자재료공학과) ;
  • 박철환 (광운대학교 화학공학과) ;
  • 서의경 (광운대학교 법학과) ;
  • 오종민 (광운대학교 전자재료공학과)
  • Received : 2022.05.16
  • Accepted : 2022.05.25
  • Published : 2022.07.01

Abstract

Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부가 지원하는 한국연구재단(No.2020R1F1A107349113)과 산업통상자원부 지원의 한국산업기술진흥원(P0012451, 산업혁신인재성장지원사업) 및 2021년도 광운대학교 융·복합 연구과제 지원사업의 지원을 받아 수행된 연구임.

References

  1. Z. Duan, Y, Jiang, and H. Tai, J. Mater. Chem. C, 9, 14963 (2021). [DOI: https://doi.org/10.1039/d1tc04180k]
  2. F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan, Pediatr. Pulmonol., 46, 523 (2011). [DOI: https://doi.org/10.1002/ppul.21416]
  3. I. I. Immoreev and P.G.S.D.V. Fedotov, Proc. 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580) (IEEE, Baltimore, USA, 2002) p. 201. [DOI: https://doi.org/10.1109/UWBST.2002.1006348]
  4. K. Ota, Y. Ota, M. Otsu, and A. Kajiwara, Proc. 2011 IEEE Sensors Applications Symposium (IEEE, San Antonio, USA, 2011) p. 159. [DOI: https://doi.org/10.1109/SAS.2011.5739786]
  5. A. Cesareo, Y. Previtali, E. Biffi, and A. Aliverti, Sensors, 19, 88 (2019). [DOI: https://doi.org/10.3390/s19010088]
  6. C. Massaroni, A. Nicolo, D. L. Presti, M. Sacchetti, S. Silvestri, and E. Schena, Sensors, 19, 908 (2019). [DOI: https://doi.org/10.3390/s19040908]
  7. Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie, M. Yao, H. Tai, Y. Jiang, and J. Chen, Adv. Mater., 33, 2101262 (2021). [DOI: https://doi.org/10.1002/adma.202101262]
  8. M. Villarroel, S. Chaichulee, J. Jorge, S. Davis, G. Green, C. Arteta, A. Zisserman, K. McCormick, P. Watkinson, and L.Tarassenko, npj Digital Med., 2, 128 (2019). [DOI: https://doi.org/10.1038/s41746-019-0199-5]
  9. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Sens. Actuators, B, 146, 98 (2010). [DOI: https://doi.org/10.1016/j.snb.2010.02.030]
  10. J. Yuk and T. Troczynski, Sens. Actuators, B, 94, 290 (2003). [DOI: https://doi.org/10.1016/S0925-4005(03)00371-X]
  11. J. G. Liang, C. Wang, Z. Yao, M. Q. Liu, H. K. Kim, J. M. Oh, and N. Y. Kim, ACS Appl. Mater. Interfaces, 10, 851 (2018). [DOI: https://doi.org/10.1021/acsami.7b14082]
  12. K. Z. Soderznik, C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, and M. Ceh, Proceedings, 15, 9 (2019). [DOI: https://doi.org/10.3390/proceedings2019015009]
  13. M. Viviani, M. T. Buscaglia, V. Buscaglia, M. Leoni, and P. Nanni, J. Eur. Ceram. Soc., 21, 1981 (2001). [DOI: https://doi.org/10.1016/S0955-2219(01)00155-8]
  14. J. G. Liang, E. S. Kim, C. Wang, M. Y. Cho, J. M. Oh, and N. Y. Kim, Sens. Actuators, B, 265, 632 (2018). [DOI: https://doi.org/10.1016/j.snb.2018.03.093]
  15. M. Y. Cho, S. Kim, I. S. Kim, E. S. Kim, Z. J. Wang, N. Y. Kim, S. W. Kim, and J. M. Oh, Adv. Funct. Mater., 30, 1907449 (2020). [DOI: https://doi.org/10.1002/adfm.201907449]
  16. W. K. Tan, Y. Shigeta, A. Yokoi, G. Kawamura, A. Matsuda, and H. Muto, Appl. Surf. Sci., 483, 212 (2019). [DOI: https://doi.org/10.1016/j.apsusc.2019.03.278]
  17. C. Lee, M. Y. Cho, M. Kim, J. Jang, Y. Oh, K. Oh, S. Kim, B. Park, B. Kim, S. M. Koo, J. M. Oh, and D. Lee, Sci. Rep., 9, 2166 (2019). [DOI: https://doi.org/10.1038/s41598-019-38477-y]
  18. M. Y. Cho, I. S. Kim, S. H. Kim, C. Park, N. Y. Kim, S. W. Kim, S. Kim, and J. M. Oh, ACS Appl. Mater. Interfaces, 13, 5602 (2021). [DOI: https://doi.org/10.1021/acsami.0c21097]
  19. W. Jeong, J. Song, J. Bae, K. R. Nandanapalli, and S. Lee, ACS Appl. Mater. Interfaces, 11, 44758 (2019). [DOI: https://doi.org/10.1021/acsami.9b17584]
  20. X. Huang, B. Li, L. Wang, X. Lai, H. Xue, and J. Gao, ACS Appl. Mater. Interfaces, 11, 24533 (2019). [DOI: https://doi.org/10.1021/acsami.9b04304]
  21. J. Luo, Y. Yao, X. Duan, and T. Liu, J. Mater. Chem. C, 6, 4727 (2018). [DOI: https://doi.org/10.1039/c8tc00457a]
  22. S. Kano and M. Fujii, ACS Sustainable Chem. Eng., 6, 12217 (2018). [DOI: https://doi.org/10.1021/acssuschemeng.8b02550]