Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.1.63

Fabrication and Characterization of Hybrid NTC Thermistor Films with Conducting Oxide Particles by an Aerosol-Deposition Process  

Kang, Ju-Eun (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Ryu, Jungho (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Choi, Jong-Jin (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Yoon, Woon-Ha (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Kim, Jong-Woo (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Ahn, Cheol-Woo (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Choi, Joon Hwan (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Park, Dong-Soo (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS))
Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
Publication Information
Abstract
Negative-temperature coefficient (NTC) thermistors based on nickel manganite spinel ($NiMn_2O_4$) are widely used for many applications, such as sensors and temperature compensators, due to their good thermistor characteristics and stabilities. However, to achieve thermistors with a high NTC B constant, which is an important figure of merit pertaining to the degree of temperature sensitivity, the activation energy should be high such that high resistivity at ambient temperatures results. To obtain a high B constant and low resistivity, Al and Si modified spinel structured $Ni_{0.6}Si_{0.2}Al_{0.6}Mn_{1.6}O_4$ hybrid thick films with the conducting metal oxide of $LaNiO_3$ were fabricated on a glass substrate by aerosol deposition at room temperature (RT). The NTC-$LaNiO_3$ hybrid thick films showed resistivity as low as < $100k{\Omega}\;cm$ at $90^{\circ}C$, which is one or two orders of magnitude lower than that of the monolithic NTC films, while retaining a high B constant of $NiMn_2O_4$ of over 5500 K when 20 wt% $LaNiO_3$ was added without a post-thermal treatment. These phenomena are explained by the percolation threshold mechanism.
Keywords
NTC thermistor; $LaNiO_3$; Thick film; Hybrid; Aerosol-deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Feteira, "Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective," J. Am. Ceram. Soc., 92 [5] 967-83 (2009).   DOI
2 S. Fritsch, J. Sarrias, M. Brieu, J. J. Couderc, E. Snoeck, and A. Rousset, "Correlation between the Structure, the Microstructure and the Electrical Properties of Nickel Manganite Negative Temperature Coefficient (NTC) Thermistors," Solid State Ion., 109 229-37 (1998).   DOI   ScienceOn
3 R. Schmidt and A. W. Brinkman, "Preparation Characterization of $NiMn_{2}O_{4}$ Films," Inter. J. Inorgan Mater., 3 1215-17 (2001).   DOI   ScienceOn
4 R. Schmidt, A. Basu, A. W. Brinkman, Z. Klusek, and P. K. Datta, "Electron-hopping Modes in $NiMn_{2}O_{4+{\delta}}$ Materials," Appl. Phys. Lett., 86 [7] 073501-073501-3 (2005).   DOI   ScienceOn
5 S. Jagtap, S. Rane, S. Gosavi, and D. Amalnerkar, "Preparation, Characterization and Electrical Properties of Spineltype Environment Friendly Thick Film NTC Thermistors," J. Eur. Ceram. Soc., 28 2501-07 (2008).   DOI   ScienceOn
6 R. Schmidt, A. Basu, and A. W. Brinkman, "Production of NTCR Thermistor Devices based on $NiMn_{2}O_{4+{\delta}}$," J. Eur. Ceram. Soc., 24 1233-36 (2008).
7 R. Schmidt, A. Stiegelschmitt, A. Roosen, and A. W. Brinkman, "Screen Printing of Co-precipitated $NiMn_{2}O_{4+{\delta}}$ for Production of NTCR Thermistors," J. Eur. Ceram. Soc., 23 1549-58 (2003).   DOI   ScienceOn
8 M. N. Muralidharan, P. R. Rohini, E. K. Sunny, K. R. Dayas, and A. Seema, "Effect of Cu and Fe Addition on Electrical Properties of Ni-Mn-Co-O NTC Thermistor Compositions," Ceram. Int., 38 [8] 6481-86 (2012).   DOI   ScienceOn
9 J. Ryu, D.-S. Park, and R. Schmidt, "In-plane Impedance Spectroscopy in Aerosol Deposited $NiMn_{2}O_{4}$ Negative Temperature Coefficient Thermistor Films," J. Appl. Phys., 109 [12] 113722-1-113722-7 (2011).   DOI   ScienceOn
10 J. Ryu, K.-Y. Kim, J.-J. Choi, B.-D. Hahn, W.-H. Woon, B.-K. Lee, D.-S. Park, and C. Park, "Highly Dense and Nanograined $NiMn_{2}O_{4}$ NTC Thermistor Thick Films Fabricated by Aerosol-Deposition," J. Am. Ceram. Soc., 92 [12] 3084-87 (2009).   DOI   ScienceOn
11 J. E. Kang, J. H. Ryu, G. Han, J. J. Choi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, J. H. Choi, and D. S. Park, "$LaNiO_{3}$ Conducting Particle Dispersed $NiMn_{2}O_{4}$ Nanocomposite NTC Thermistor Thick Films by Aerosol Deposition," J. Alloy. Compd., 534 [5] 70-73 (2012).   DOI   ScienceOn
12 H. J. Kim, Y. J. Yoon, J. H. Kim, and S. M. Nam, "Application of $Al_{2}O_{3}$-Based Polyimide Composite Thick Films to Integrated Substrates Using Aerosol Deposition Method," Mat. Sci. Eng., B 161 104-8 (2009).   DOI   ScienceOn
13 J. Ryu, D. S. Park, B. D. Hahn, J. J. Choi, W. H. Yoon, K. Y. Kim, and H. S. Yun, "Photocatalytic $TiO_{2}$ Thin Films by Aerosol-Deposition : From Micron-Sized Particles to Nano-Grained Thin Film at Room Temperature," Appl. Catal. BEnviron., 83, 1-7 (2008).   DOI   ScienceOn
14 M. Stuer, Z. Zhao, and P. Bowen, "Freeze Granulation : Powder Processing for Transparent Alumina Applications," J. Eur. Ceram. Soc., 32 2899-908 (2012).   DOI   ScienceOn
15 R.C. Kambale, D.-Y. Jeong, and J. Ryu, "Current Status of Magnetoelectric Composite Thin/Thick Films," Adv. Cond. Matt. Phys., 2012 ID824643:1-15 (2012).
16 J. Ryu, K.-Y. Kim, B.-D. Hahn, J.-J. Choi, W.-H. Yoon, B.-K. Lee, D.-S. Park, and C. Park, "Photocatalytic Nanocomposite Thin Films of $TiO_{2}$-b-Calcium Phosphate by Aerosol-Deposition," Catal. Comm., 10 [5] 596-99 (2009).   DOI   ScienceOn
17 S. Liang, J. Yang, X. Yi, X. Zhang, and Y. Bai, "An Efficient Way to Improve the Electrical Stability of $Ni_{0.6}Si_{0.2}Al_{0.6}Mn_{1.6}O_{4}$ NTC Thermistor," Ceram. Int., 37 [7] 2537-41 (2011).   DOI   ScienceOn