Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.2.98

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process  

Park, Hyungkwon (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University)
Kwon, Juhyuk (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University)
Lee, Illjoo (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University)
Lee, Changhee (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University)
Publication Information
Korean Journal of Materials Research / v.24, no.2, 2014 , pp. 98-104 More about this Journal
Abstract
Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.
Keywords
vacuum kinetic spray(aerosol deposition); particle velocity; computational fluid dynamics(CFD); slit cell method(SCM); process gas flow;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. W. Lee, H. J. Kim and S. M. Nam, J. Korean Phys. Soc., 57(4), 1115 (2010).   DOI
2 J. Akedo, J. Therm. Spray Technol., 17(2), 181 (2008).   DOI   ScienceOn
3 B. D. Hahn, Y. L. Cho, D. S. Park, J. J. Choi, J. H. Ryu, J. W. Kim, C. W. Ahn, C. Park, H. E. Kim and S. G. Kim, J. Biomater. Appl., 27(5), 587 (2013).   DOI
4 J. J. Choi, D. S. Park, B. G. Seong and H. Y. Bae, Int. J. Hydrogen Energy, 37, 9809 (2012).   DOI
5 O. Y. Kwon, H. J. Na, H. J. Kim, D. W. Lee and S. M. Nam, Nanoscale Res. Lett., 7, 261 (2012).   DOI
6 J. Akedo, J. Am. Ceram. Soc., 89(6), 1834 (2006).   DOI   ScienceOn
7 D. M. Chun and S. H. Ahn, Acta Mater., 59, 2693 (2011).   DOI
8 F. Cao, H. K. Park, G. Y. Bae, J. A. Heo and C. H. Lee, J. Am. Ceram. Soc., 96(1), 40 (2013).   DOI
9 H. K. Park, J. A. Heo, F. Cao, J. H. kwon, K. C. Kang, G. Y. Bae and C. H. Lee, J. Therm. Spray Technol., 22(6), 882 (2013).   DOI
10 F. Cao, H. K. Park, J. A. Heo, J. H. Kwon and C. H. Lee, J. Therm. Spray Technol. 22(7), 1109 (2013).   DOI
11 D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun and S. M. Nam, J. Am. Ceram. Soc., 94(9), 3131 (2011).   DOI   ScienceOn
12 D. W. Lee and S. M. Nam, J. Ceram. Process Res., 11(1), 100 (2010).
13 C. W. Kim, J. H. Choi, H. J. Kim, D. W. Lee, C. Y. Hyun and S. M. Nam, Ceram. Int., 38, 5621 (2012).   DOI
14 H. Assadi, F. Gärtner, T. Stoltenhoff and H. Kreye, Acta Mater., 51, 4379 (2003).   DOI   ScienceOn
15 T. Schmidt, F. Gartner, H. Assadi and H. Kreye, Acta Mater., 54, 729 (2006).   DOI   ScienceOn
16 M. Lebedev, J. Akedo, K. Mori and T. Eiju, J. Vac. Sci. Technol. A, 18(2), 563 (2000).   DOI
17 K. Naoe, M. Nishiki and A. Yumoto, J. Therm. Spray Technol., 22(8), 1267 (2013).   DOI
18 D. M. Chun, J. O. Choi, C. S. Lee and S. H. Ahn, Surf. Coat. Technol., 206, 2125 (2012).   DOI
19 Ansys Fluent User's Guide, Release 14.0, ANSYS, Inc., November 2011 (2011).
20 W. Y. Li, H. Liao, H. T. Wang, C. J. Li, G. Zhang and C. Coddet, Appl. Surf. Sci., 253, 708 (2006).   DOI   ScienceOn
21 M. W. Lee, J. J. Park, D. Y. Kim, S. S. Yoon, H. Y. Kim, D. H. Kim, S. C. James, S. Chandra, T. Coyle, J. H. Ryu, W. H. Yoon and D. S. Park, J. Aerosol Sci., 42, 771 (2011).   DOI   ScienceOn
22 H. Katanoda and K. Matsuo, Mater. Trans., 47(7), 1620 (2006).   DOI
23 A. Iwata and J. Akedo, J. Cryst. Growth, 275, e1269 (2005).   DOI
24 J. H. Ryu, B. D. Hahn, J. J. Choi, W. H. Yoon, B. K. Lee, J. H. Choi and D. S. Park, J. Am. Ceram. Soc., 93(1), 55 (2010).   DOI
25 G. Y. Bae, Y. Xiong, S. Kumar, K. C. Kang and C. H. Lee, Acta Mater., 56, 4858 (2008).   DOI   ScienceOn