Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.15

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications  

Park, Tae-Ung (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education)
Kim, Ik-Soo (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, Min-Ji (Department of Electronic Materials Engineering, Kwangwoon University)
Park, Chulhwan (Department of Chemical Engineering, Kwangwoon University)
Seo, Eui-kyoung (Division of Law, Kwangwoon University)
Oh, Jong-Min (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 412-417 More about this Journal
Abstract
Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.
Keywords
Humidity sensor; Non-contact monitoring; Ceramic/metal halide composite; Aerosol deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie, M. Yao, H. Tai, Y. Jiang, and J. Chen, Adv. Mater., 33, 2101262 (2021). [DOI: https://doi.org/10.1002/adma.202101262]   DOI
2 M. Villarroel, S. Chaichulee, J. Jorge, S. Davis, G. Green, C. Arteta, A. Zisserman, K. McCormick, P. Watkinson, and L.Tarassenko, npj Digital Med., 2, 128 (2019). [DOI: https://doi.org/10.1038/s41746-019-0199-5]   DOI
3 J. Yuk and T. Troczynski, Sens. Actuators, B, 94, 290 (2003). [DOI: https://doi.org/10.1016/S0925-4005(03)00371-X]   DOI
4 J. G. Liang, C. Wang, Z. Yao, M. Q. Liu, H. K. Kim, J. M. Oh, and N. Y. Kim, ACS Appl. Mater. Interfaces, 10, 851 (2018). [DOI: https://doi.org/10.1021/acsami.7b14082]   DOI
5 I. I. Immoreev and P.G.S.D.V. Fedotov, Proc. 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580) (IEEE, Baltimore, USA, 2002) p. 201. [DOI: https://doi.org/10.1109/UWBST.2002.1006348]   DOI
6 C. Lee, M. Y. Cho, M. Kim, J. Jang, Y. Oh, K. Oh, S. Kim, B. Park, B. Kim, S. M. Koo, J. M. Oh, and D. Lee, Sci. Rep., 9, 2166 (2019). [DOI: https://doi.org/10.1038/s41598-019-38477-y]   DOI
7 M. Viviani, M. T. Buscaglia, V. Buscaglia, M. Leoni, and P. Nanni, J. Eur. Ceram. Soc., 21, 1981 (2001). [DOI: https://doi.org/10.1016/S0955-2219(01)00155-8]   DOI
8 J. G. Liang, E. S. Kim, C. Wang, M. Y. Cho, J. M. Oh, and N. Y. Kim, Sens. Actuators, B, 265, 632 (2018). [DOI: https://doi.org/10.1016/j.snb.2018.03.093]   DOI
9 W. K. Tan, Y. Shigeta, A. Yokoi, G. Kawamura, A. Matsuda, and H. Muto, Appl. Surf. Sci., 483, 212 (2019). [DOI: https://doi.org/10.1016/j.apsusc.2019.03.278]   DOI
10 W. Jeong, J. Song, J. Bae, K. R. Nandanapalli, and S. Lee, ACS Appl. Mater. Interfaces, 11, 44758 (2019). [DOI: https://doi.org/10.1021/acsami.9b17584]   DOI
11 X. Huang, B. Li, L. Wang, X. Lai, H. Xue, and J. Gao, ACS Appl. Mater. Interfaces, 11, 24533 (2019). [DOI: https://doi.org/10.1021/acsami.9b04304]   DOI
12 S. Kano and M. Fujii, ACS Sustainable Chem. Eng., 6, 12217 (2018). [DOI: https://doi.org/10.1021/acssuschemeng.8b02550]   DOI
13 M. Y. Cho, S. Kim, I. S. Kim, E. S. Kim, Z. J. Wang, N. Y. Kim, S. W. Kim, and J. M. Oh, Adv. Funct. Mater., 30, 1907449 (2020). [DOI: https://doi.org/10.1002/adfm.201907449]   DOI
14 C. Massaroni, A. Nicolo, D. L. Presti, M. Sacchetti, S. Silvestri, and E. Schena, Sensors, 19, 908 (2019). [DOI: https://doi.org/10.3390/s19040908]   DOI
15 Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Sens. Actuators, B, 146, 98 (2010). [DOI: https://doi.org/10.1016/j.snb.2010.02.030]   DOI
16 K. Z. Soderznik, C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, and M. Ceh, Proceedings, 15, 9 (2019). [DOI: https://doi.org/10.3390/proceedings2019015009]   DOI
17 M. Y. Cho, I. S. Kim, S. H. Kim, C. Park, N. Y. Kim, S. W. Kim, S. Kim, and J. M. Oh, ACS Appl. Mater. Interfaces, 13, 5602 (2021). [DOI: https://doi.org/10.1021/acsami.0c21097]   DOI
18 F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan, Pediatr. Pulmonol., 46, 523 (2011). [DOI: https://doi.org/10.1002/ppul.21416]   DOI
19 J. Luo, Y. Yao, X. Duan, and T. Liu, J. Mater. Chem. C, 6, 4727 (2018). [DOI: https://doi.org/10.1039/c8tc00457a]   DOI
20 Z. Duan, Y, Jiang, and H. Tai, J. Mater. Chem. C, 9, 14963 (2021). [DOI: https://doi.org/10.1039/d1tc04180k]   DOI
21 K. Ota, Y. Ota, M. Otsu, and A. Kajiwara, Proc. 2011 IEEE Sensors Applications Symposium (IEEE, San Antonio, USA, 2011) p. 159. [DOI: https://doi.org/10.1109/SAS.2011.5739786]   DOI
22 A. Cesareo, Y. Previtali, E. Biffi, and A. Aliverti, Sensors, 19, 88 (2019). [DOI: https://doi.org/10.3390/s19010088]   DOI