Browse > Article
http://dx.doi.org/10.5805/SFTI.2022.24.1.138

Application and Functionalization of Graphene Oxide on Cotton Fabric Via Aerosol Spray Pyrolysis  

Ohm, Hyunji (Dept. of Clothing & Textiles, Yonsei University)
Cho, Gilsoo (Dept. of Clothing & Textiles, Yonsei University)
Publication Information
Fashion & Textile Research Journal / v.24, no.1, 2022 , pp. 138-145 More about this Journal
Abstract
Today, graphene loaded textiles are being considered promising smart clothing due to their high conductivity. In this study, we reported reduced graphene oxide(r-GO) deposited pure cotton fabrics fabricated with a colloidal solution of graphene(GO), using a one-step aerosol spray pyrolysis(ASP) process and their potential application on smart textiles. The ASP process is advantageous in that it is easily implementable and can be applied for continuous processing. Moreover, this process has never been applied to deposit r-GO on pure cotton fabric. The field emission-scanning microscopy (FE-SEM) observation, Fourier transform-infrared(FT-IR) analysis, Raman spectroscopy, X-ray diffraction(XRD) analysis, and ultraviolet transmittance(UVT) were used to evaluate material properties of the r-GO colloids. The resistance was also measured to evaluate the electrical conductivity of the specimens. The results revealed that the r-GO was successfully deposed on specimens, and the specimen with the highest electrical conductivity demonstrated an electrical resistance value of 2.27 kΩ/sq. Taken together, the results revealed that the ASP method demonstrated a high potential for effective deposition of r-GO on cotton fabric specimens and is a prospect for the development of conductive cotton-based smart clothing. Therefore, this study is also meaningful in that the ASP process can be newly applied by depositing r-GO on the pure cotton fabric.
Keywords
graphene; graphene oxide; reduction; aerosol spraying pyrolysis; conductivity; smart clothing; smart textile sensor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pandiyarasan, V., Archana, J., Pavithra, A., Ashwin, V., Navaneethan, M., Hayakawa, Y., & Ikeda, H. (2017). Hydrothermal growth of reduced graphene oxide on cotton fabric for enhanced ultraviolet protection applications. Materials Letters, 188, 123-126. doi:10.1016/j.matlet.2016.11.047   DOI
2 Samanta, A., & Bordes, R. (2020). Conductive textiles prepared by spray coating of water-based graphene dispersions. RSC Advances, 10(4), 2396-2403.   DOI
3 Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X. M. (2014). Fiber-based wearable electronics - A review of materials, fabrication, devices, and applications. Advanced materials, 26(31), 5310-5336   DOI
4 Kim, W., Lee, E., Choi, J., & Cho, G. (2020). Improved electrical conductivity of polyurethane nanoweb coated with graphene ink through heat treatment. Fibers and Polymers, 21(6), 1195-1199. doi:10.1007/s12221-020-9912-x   DOI
5 Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2012). Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chemistry of Materials, 24(12), 2292-2298. doi:10.1021/cm300382b   DOI
6 Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017   DOI
7 Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2016). Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles. The Journal of The Textile Institute, 107(9), 1122-1134. doi:10.1080/00405000.2015.1093311   DOI
8 Jang, E., & Cho, G. (2019). The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. doi:10.5805/sfti.2019.21.6.697   DOI
9 Lee, C., Chang, H., & Jang, H. D. (2017). Preparation of CoFe2O4-graphene composites using aerosol spray pyrolysis for super-capacitors application. Particle and aerosol research, 13(1), 33-40. doi: 10.4209/aaqr.2018.10.0372   DOI
10 Tian, M., Hu, X., Qu, L., Zhu, S., Sun, Y., & Han, G. (2016). Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon, 96, 1166-1174. doi:10.1016/j.carbon.2015.10.080   DOI
11 Jang, H. D., Kim, S. K., Chang, H., Choi, J. W., Luo, J., & Huang, J. (2013). One-step synthesis of Pt-nanoparticles-laden graphene crumples by aerosol spray pyrolysis and evaluation of their electrocatalytic activity. Aerosol Science and Technology, 47(1), 93-98. doi:10.1080/02786826.2012.728302   DOI
12 Kim, D., & Kim, K. (2007). Preparation of nanoparticles by gas phase processes. Korean Chemical Engineering Research, 45(6), 536-546.
13 Ha, T., Kim, S. K., Choi, J. W., Chang, H., & Jang, H. D. (2019). pH controlled synthesis of porous graphene sphere and application to supercapacitors. Advanced Powder Technology, 30(1), 18-22. doi:10.1016/j.apt.2018.10.002   DOI
14 Cai, G., Xu, Z., Yang, M., Tang, B., & Wang, X. (2017). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393, 441-448. doi:10.1016/j.apsusc.2016.10.046   DOI