• Title/Summary/Keyword: APCVD

Search Result 110, Processing Time 0.029 seconds

Characteristics of polycrystalline 3C-SiC micro pressure sensors for high temperature applications (초고온용 다결정 3C-SiC 마이크로 압력센서의 특성)

  • Thien, Duong Xuan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.387-388
    • /
    • 2008
  • High temperature micro pressure sensors were fabricated by polycrystalline (poly) 3C-SiC piezoresistors formed by oxidized SOI substrates with APCVD. These have been designed by bulk micromachining below $1{\times}1mm^2$ diaphragm and Si membrane $20{\mu}m$ thick. The pressure sensitivity of fabricated pressure sensor was 0.1 mV/Vbar. The non-linearity of sensor was ${\pm}0.44%$ FS and the hysteresis was 0.61% FS.TCS of pressure sensor was -1867 ppm/$^{\circ}C$, its TCR was -792 ppm/$^{\circ}C$, and TCGF to 5 bar was -1042 ppm/$^{\circ}C$ from 25 to $400^{\circ}C$.

  • PDF

Crystal growth of uniform 3C-SiC thin films by CVD (CVD에 의한 균일한 다결정 3C-SiC 박막 결정 성장)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.234-235
    • /
    • 2008
  • The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of poly(polycrystalline) 3C-SiC thin films according to Ar flow rates and the geometric structures of reaction tube, respectively. The poly 3C-SiC thin film was deposited by APCVD (Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS (Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 1~10 slm Ar as the main flow gas. According to the increase of main carrier gas, surface fringes and flatness are improved. It shows the distribution of thickness is formed uniformly.

  • PDF

Dielectric Characteristics of $SiO_2/Si_3N_4$ Double Layer ($SiO_2/Si_3N_4$ 2중층 박막의 유전특성)

  • Ko, K.Y.;Kim, G.S;Hong, N.P.;Byun, D.G.;Lee, C.H.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1526-1528
    • /
    • 2003
  • 본 연구에서는 P-type Si wafer에 1000[$^{\circ}C$]의 조건에서 열산화방식으로 성장시킨 산화막($SiO_2$) 두께 3000[${\AA}$] 그 위에 APCVD방법으로 형성시킨 질화막($Si_3N_4$)의 두께 500[${\AA}$], 1500[${\AA}$]인 시료에 대하여 전기적 특징 중 유전정접 특성에 관하여 조사하였다. [1] 또한 각각의 두께에 대하여 측정 온도범위 상온${\sim}150[^{\circ}C]$ 와 인가전압 범위 1[V]${\sim}$20[V]에서 유전정접의 주파수 의존성과 온도 의존특성을 조사하고 특히 정전용량 변화에 따른 유전특성에 대하여 조사하고 변환기 소자재료 개발을 위한 기초물성을 실험한 결과를 보고한다.

  • PDF

Fabrication of a Pd/poly 3C-SiC Schottky diode hydrogensensor and its characteristics (Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작과 그 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.222-225
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C-SiC thin films grown on Si substrates with thermal oxide layer using APCVD. Pd/poly 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about 400 $^{\circ}$. The characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate, and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature $H_2$ sensor applications.

Fabrication and characteristics of polycrystalline 3C-SiCSchottky diodes for high temperature chemical sensors (고온 화학센서용 다결정 3C-SiC 쇼트키 다이오드 제작과 그 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.414-417
    • /
    • 2008
  • This paper describes the fabrication of a Pd/poly 3C-SiC Schottky diode and its characteristics, in which the poly 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

Mechanical Characteristics of Poly 3C-SiC Thin Films (다결정 3C-SiC 박막의 기계적 특성)

  • Han, Ki-Bong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.359-360
    • /
    • 2007
  • In this paper, the elastic modulus and hardness of poly 3C-SiC thin films growed by APCVD were measured using nanoindentation test. The resulting values of elastic modulus E and hardness H of the poly 3C-SiC film are 305 GPa and 26 GPa, respectively. The mechanical properties of the poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion resistance, high frequency, and bio MEMS applications.

  • PDF

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

Fabrication of Pd/poly 3C-SiC Schottky diode hydrogen sensors (Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작)

  • Chung, Dong-Yong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.236-236
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C - SiC thin film grown on Si substrates with thermal oxide layer using APCVD. Pd/poiy 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2\times10^{-3}\;A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about $400^{\circ}C$. According to $H_2$ concentrations, their barrier height($\Phi_{Bn}$) were changed 0.587 eV, 0.579 eV, 0.572 eV and 0.569 eV, respectively. the current was increased. Characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

  • PDF

Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films (In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

Raman Scattering Characteristics of Polycrystalline 3C-SiC Thin Films deposited on AlN Buffer Layer (AlN 버퍼층위에 증착된 다결정 3C-SiC 박막의 라만 산란 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.493-498
    • /
    • 2008
  • This Paper describes the Raman scattering characteristics of polycrystalline (Poly) 3C-SiC thin films, in which they were deposited on AlN buffer layer by APCVD using hexamethyldisilane (MHDS) and carrier gases (Ar+$H_2$). When the Raman spectra of SiC films deposited on the AlN layer of before and after annealing were worked according to growth temperature, D and G bands of graphite were measured. It can be explained that poly 3C-SiC films admixe with nanoparticle graphite and its C/Si rate is higher than ($C/Si\;{\approx}\;3$) that of the conventional SiC, which has no D and G bands related to graphite. From the Raman shifts of 3C-SiC films deposited at $1180^{\circ}C$ on the AlN layer of after annealing, the biaxial stress of poly 3C-SiC films was obtained as 896 MPa.