• Title/Summary/Keyword: AFM lithography

Search Result 72, Processing Time 0.026 seconds

Development of process flexibility by SOG resist analysis with AFM lithography (AFM lithography에 있어서 SOG resist의 특성 분석에 의한 공정 여유도 개선)

  • 최창훈;이상훈;김수길;최재혁;박선우
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 1996
  • We found that SOG which had been used in plarnarization of VLSI circuit fabrication at present could be used as a resist material for AFM lithography. In this experiment on the basis of previous studies, we improved the process flexibility by controlling the coating film thickness, etching time, etching selectively and proper applied voltage on the pattern size to apply for practical VLSI lithography process. We obtained pattern with the current of 5 nA at 60 V. The line width was 800 $\AA$. With the developed flexibility of SOG as a resist material, AFM lithography will be a expedient technique in the next generation DRAM fabrication.

  • PDF

The study about phase phase change material at nano-scale using c-AFM method (c-AFM 기술을 이용한 나노급 상변화 소자 특성 평가에 대한 연구)

  • Hong, Sung-Hoon;Lee, Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.57-57
    • /
    • 2010
  • In this study, nano-sized phase change materials were evaluated using nanoimprint lithography and c-AFM technique. The 200nm in diameter phase change nano-pillar device of GeSbTe, AgInSbTe, InSe, GeTe, GeSb were successfully fabricated using nanoimprint lithography. And the electrical properties of the phase change nano-pillar device were evaluated using c-AFM with pulse generator and voltage source.

  • PDF

Anodic Oxidation Lithography via Atomic Force Microscope on Organic Resist Layers (유기 저항막을 이용한 원자힘 현미경 양극산화 패터닝 기술)

  • Kim, Sung-Kyoung;Lee, Hai-Won
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.187-195
    • /
    • 2006
  • Atomic force microscope (AFM)-based anodic oxidation lithography has gained great in forests in fabricating nanometer scale features on semiconductor or metal substrates beyond the limitation of optical lithography. In this article AFM anodic oxidation lithography and its organic resist layers are introduced based on our previous works. Organic resist layers of self-assembled monolayers, Langmuir-Blodgett films and polymer films aye suggested to play a key role in enhancing the aspect ratio of producing features, the lithographic speed, and spatial precision in AFM anodic oxidation lithography.

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

Characterization and Manipulation of Graphene Using AFM

  • Park, Bae-Ho;Choe, Jin-Sik;Byeon, Ik-Su;Kim, Jin-Su;Lee, Deok-Hyeon;Lee, Mi-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.113-113
    • /
    • 2012
  • 차세대 소재로 많은 관심을 받고 있는 graphene에서는 탄소원자가 육각형 구조를 가지고 2차원으로 배열되어 있으며, 이로 인해 높은 전하 이동도와 같은 독특한 전하의 전도 특성이 나타날 것으로 예측된다. graphene에서의 독특한 전도 특성을 활용한 고속/저전력 전자 소자가 구현되기 위해서는 이론에서 예측된 독특한 전하 특성이 실험적으로 구현되어야 하며, 상온의 열에너지보다 큰 밴드갭이 형성되어야 한다. 본 발표에서는 먼저 atomic force microscope (AFM)을 이용하여 graphene의 전도 특성을 저해할 것으로 예측되는 구역 구조를 관찰한 연구 결과를 발표하고 구역 구조가 발생할 수 있는 원인에 대해 고찰하고자 한다. 또한, graphene을 활용해서 충분히 큰 밴드갭을 가지는 나노 크기의 물질을 간편하게 형성하기 위해 AFM lithography를 적용한 연구 결과를 발표하고 기존의 화학적 방법으로 제조된 graphene 관련 물질들과 기본 물성을 비교하고자 한다.

  • PDF

Nano-master fabrication for photonic crystal waveguides (광결정 도파로용 나노 마스터 제작)

  • 최춘기;한상필;정명영
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.288-292
    • /
    • 2003
  • The fabrication of silicon nano-master with pillar structures using E-beam lithography and ICP etching was investigated for application of 2-dimensional polymer photonic crystal waveguides with air hole structures. Pillar structures with square, hexagon, dodecagon and circle were successfully fabricated. The diameters and structures of fabricated pillars were measured by CD-SEM and SPM-AFM. It was found that the optimal dose for complete circle pillar structures was 432 $\mu$C/$\textrm{cm}^2$.