Browse > Article

Anodic Oxidation Lithography via Atomic Force Microscope on Organic Resist Layers  

Kim, Sung-Kyoung (Department of Chemistry, Hanyang University)
Lee, Hai-Won (Department of Chemistry, Hanyang University)
Publication Information
Polymer(Korea) / v.30, no.3, 2006 , pp. 187-195 More about this Journal
Abstract
Atomic force microscope (AFM)-based anodic oxidation lithography has gained great in forests in fabricating nanometer scale features on semiconductor or metal substrates beyond the limitation of optical lithography. In this article AFM anodic oxidation lithography and its organic resist layers are introduced based on our previous works. Organic resist layers of self-assembled monolayers, Langmuir-Blodgett films and polymer films aye suggested to play a key role in enhancing the aspect ratio of producing features, the lithographic speed, and spatial precision in AFM anodic oxidation lithography.
Keywords
atomic force microscope; nanolithography anodic oxidation or anodization; organic resist; self-assembled monolayer; Langmuir-Blodgett film; polymer resist;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 P. Gould, Materialstoday, 6, 34 (2003)
2 D. Wouters and U. S. Schubert, Angew. Chem. Int. Ed., 43, 2480 (2004)   DOI   ScienceOn
3 S. L. Brandow, W. J. Dressick, C. S. Dulcey, T. S. Koloski, L. M. Shirey, J. Schmidt, and J. M. Calvert, J. Vac. Sci. Technol. B, 15, 1818 (1997)   DOI
4 P. E. Sheehan, L. J. Whitman, P. K. William, and A. N. Brent, Appl. Phys, Lett., 85, 1589 (2004)   DOI   ScienceOn
5 D. Stievenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett., 70, 3272 (1997)   DOI   ScienceOn
6 W. Lee, Y. Oh, E. R. Kim, and H. Lee, Synthetic Metals, 117, 305 (2001)   DOI
7 W. Lee, E. R. Kim, and H. Lee, Langmuir, 18, 8375 (2002)   DOI   ScienceOn
8 S. M. Kim and H. Lee, J. Vac. Sci Technol. 13, 21, 2398 (2003)
9 J. N. Israelachvili, Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems, 2nd ed., Academic Press, New York, 1992
10 H. Kolbe, Ann., 69, 257 (1849)
11 M. Versen, B. Klehn, U. Kunze, D. Reuter, and A. D. Wieck, Ultramicroscopy, 82, 159 (2000)   DOI
12 J. Zhao and K. Uosaki, Nano Lett., 2, 137 (2002)   DOI   ScienceOn
13 B. Legrand and D. Stievenard, Appl. Phys. Lett., 74, 4049 (1999)   DOI   ScienceOn
14 A. Ulman, An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly, Academic Press, San Diego, 1991
15 G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982)   DOI
16 G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986)
17 M. S. Son, E. R. Kim, and H. Lee, J. Korean Phys. Soc., 41, 949 (2002)
18 I-W. Lyo and Ph. Avouris, Science, 253, 173 (1991)   DOI
19 A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, J. Vac. Sci. Technol. B, 13, 2805 (1995)   DOI
20 W. Lee, H. Lee, and M. S. Chun, Langmuir, 21, 8839 (2005)   DOI   ScienceOn
21 S. H. Lee and H. Lee, Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, p109 (2004)
22 R. M. Silver, E. E. Ehrichs, and A. L. de Lozanne, Appl. Phys. Lett., 51, 247 (1987)   DOI
23 R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, Science, 283, 661 (1999)   DOI   ScienceOn
24 S. J. Bae, C. Han, M, S, Kim, C. C. Chung, and H. Lee, Nanotechnology, 16, 2082 (2005)   DOI   ScienceOn
25 Q. Li, J. Zheng, and Z. Liu, Langmuir, 19, 166 (2003)   DOI   ScienceOn
26 M. Tello and R. Garcia, Appl. Phys. Lett., 79, 424 (2001)   DOI   ScienceOn
27 P. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett., 71, 285 (1997)   DOI   ScienceOn
28 S. J. Ahn, Y. K. Jang, and H. Lee, Appl. Phys. Lett., 80, 2592 (2002)   DOI   ScienceOn
29 G. Y. Liu, S. Xu, and Y. Qian, Acc. Chem. Res., 33, 457 (2000)   DOI   ScienceOn
30 E. Garfunkel, G. Rudd, D. Novak, S. Wang, G. Ebert, M. Greenblatt, T. Gustafsson, and S. H. Garofalini, Science, 246, 99 (1989)   DOI
31 K. Wilder, B. Singh, D. F. Kyser, and C. F. Quate, J. Vac. Sci. Technol. B, 16, 6 (1998)   DOI   ScienceOn
32 S. L. Konsek, R. J. N. Coope, T. P. Pearsall, and T. Tiedje, Appl. Phys. Lett., 70, 1846 (1997)   DOI   ScienceOn
33 J. Kim, Y. Oh, H. Lee, Y. Shin, and S. Park, Jpn. J. Appl. Phys., 37, 324 (1998)
34 P. Radojkovic, M. Schwartzkopff, T. Gabriel, and E. Hartmann, Appl. Phys. A, 66, S701 (1998)   DOI   ScienceOn
35 G. Marsh, Materialstoday, 6, 28 (2003)
36 E. S. Snow, P. M. Campbell, and F. K. Perkins, Appl. Phys. Lett., 75, 1476 (1999)   DOI
37 B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, Chem. Rev., 105, 1171 (2005)   DOI   ScienceOn
38 H. Lee, S. A. Kim, S. J. Ahn, and H. Lee, Appl. Phys. Lett., 81, 138 (2002)   DOI   ScienceOn
39 J. A. Dagata, J. Schneir, H. H. Haray, C. J. Evans, M. T. Postek, and J. Bennet, Appl. Phys. Lett., 58, 2001 (1990)
40 M. Baba and S. Matsui, Jpn. J. Appl. Phys., 29, 2854 (1990)   DOI
41 H. Sugimura and N. Nakagiri, J. Vac. Sci Technol. A, 14, 1223 (1996)   DOI   ScienceOn
42 S. Xu and G. Y. Liu, Langmuir, 13, 127 (1997)   DOI   ScienceOn
43 H. J. Lee, H. Y. Park, S. Y. Koo, and H. Lee, Mat. Res. Soc. Proc., 739, 199 (2003)
44 R. M. Nyffenegger and R. M. Penner, Chem. Rev., 97, 1195 (1997)   DOI   ScienceOn
45 D. M. Eigler and D. K. Schweizer, Nature, 344, 524 (1990)   DOI
46 J. F. Liu, S. Cruchon-Dupeyrat, J. C. Garmo, J. Frommer, and G. Y. Liu, Nano Lett., 2, 937 (2002)   DOI   ScienceOn
47 S. W. Lee, B. J. Park, G. Y. Yeom, and H. Lee, Nanotechnology, 16, 3137 (2005)   DOI   ScienceOn