• Title/Summary/Keyword: 60-GHz

Search Result 464, Processing Time 0.028 seconds

60 GHz broad-band transceiver for wireless LAN (60 GHz 무선랜용 광대역 송ㆍ수신기)

  • 이문교;이복형;김성찬;김용호;이진구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.34-41
    • /
    • 2003
  • In this paper, 60GHz band transmitter and receiver for wireless LAN are designed and implemented using the broband amplifier and mixer fabricated by standard 0.1${\mu}{\textrm}{m}$ MIMIC process of MINT. Output power and gain of the RF transmitter are 0 ㏈m and 1.7㏈, respectively. Noise figure and gain of the receiver are 4.2㏈ and l5.7dB, respectively. Considering the sensitivity and LOS test, this system can communicate with BER of below than 10$^{-6}$ at a distance more than 35m. DSSS, which is strong for concealment and disturbance, is adopted.

A High Power 60 GHz Push-Push Oscillator Using $0.12{\mu}m$ Metamorphic HEMTs (60 GHz 대역 고출력 $0.12{\mu}m$ MHEMT Push-Push 발진기)

  • Lee, Jong-Wook;Kim, Sung-Won;Kim, Kyoung-Woon;Seol, Gyung-Seon;Kwon, Young-Woo;Seo, Kwang-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.495-498
    • /
    • 2006
  • This paper reports a high power 60 GHz push-push oscillator fabricated using 0.12 um metamorphic high electron-mobility transistors (mHEMTs). The devices with a $0.1{\mu}m$ gate-length exhibited good DC and RF characteristics such as a maximum drain current of 700 mA/mm, a peak gm of 660 mS/mm, and an $f_T$ of 170 GHz. By combining two sub-oscillators having $6{\times}50{\mu}m$ periphery mHEMT, the push-push oscillator achieved a 6.3 dBm of output power at 59.5 GHz with more than -35 dBc fundamental suppression. This is one of the highest output power obtained using mHEMT technology without buffer amplifier, and demonstrates the potential of mHEMT technology for cost effective millimeter-wave commercial applications.

  • PDF

State-of-the-Art mmWave Antenna Packaging Methodologies

  • Hong, Wonbin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.15-22
    • /
    • 2013
  • Low-Temperature-cofired ceramics (LTCC) antenna packages have been extensively researched and utilized in recent years due to its excellent electrical properties and ease of implementing dense package integration topologies. This paper introduces some of the key research and development activities using LTCC packaging solutions for 60 GHz antennas at Samsung Electronics [1]. The LTCC 60 GHz antenna element topology is presented and its measured results are illustrated. However, despite its excellent performance, the high cost issues incurred with LTCC at millimeter wave (mmWave) frequencies for antenna packages remains one of the key impediments to mass market commercialization of mmWave antennas. To address this matter, for the first time to the author's best knowledge this paper alleviates the high cost of mmWave antenna packaging by devising a novel, broadband antenna package that is wholly based on low-cost, high volume FR4 Printed Circuit Board (PCB). The electrical properties of the FR4 substrate are first characterized to examine its feasibility at 60 GHz. Afterwards a compact multi-layer antenna package which exhibits more than 9 GHz measured bandwidth ($S_{11}{\leq}-10$ dB) from 57~66 GHz is devised. The measured normalized far-field radiation patterns and radiation efficiency are also presented and discussed.

VCO Design using NAND Gate for Low Power Application

  • Kumar, Manoj
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.650-656
    • /
    • 2016
  • Voltage controlled oscillator (VCO) is widely used circuit component in high-performance microprocessors and modern communication systems as a frequency source. In present work, VCO designs using the different combination of NAND gates with three transistors and CMOS inverter are reported. Three, five and seven stages ring VCO circuits are designed. Coarse and fine tuning have been done using two different supply sources. The frequency with coarse tuning varies from 3.31 GHz to 5.60 GHz in three stages, 1.77 GHz to 3.26 GHz in five stages and 1.27 GHz to 2.32 GHz in seven stages VCO respectively. Moreover, for fine tuning frequency varies from 3.70 GHz to 3.94 GHz in three stages, 2.04 GHz to 2.18 GHz in five stages and 1.43 GHz to 1.58 GHz in seven stages VCO respectively. Results of power consumption and phase noise for the VCO circuits are also been reported. Results of proposed VCO circuits have been compared with previously reported circuits and present circuit approach show significant improvement.

Design and Implementation of UWB Antenna with Band Rejection Characteristics (대역저지 특성을 갖는 초광대역 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon;Yu, Jae Seong;Oh, Hee Oun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.

Conversion of Optical/Radio-frequency by Applying Optical Technology for Wireless and Ubiquitous Communication (무선 및 유비쿼터스 통신을 위한 광 기술 응용의 직접 광/RF 변환)

  • Park, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.133-138
    • /
    • 2008
  • A 50-60GHz continuous-wave(cw) millimeter-wave(MMW) was converted(generated) by applying optical technology for future wireless and ubiquitous communications. The optical power of 22.5mW was injected into optical waveguide in this experiment. The generated MMW signals were radiated in a millimeter waveguide and detected through a millimeter detector on the inside of a millimeter waveguide in this experiment. The spectral linewidth of the MMW signals was less than 1 kHz. The power fluctuation of the MMW was less than 1.2 dBm over 50-60 GHz range.

High-performance 94 GHz MMIC Low Noise Amplifier using Metamorphic HEMTs (Metamorphic HEMT를 이용한 우수한 성능의 94 GHz MMIC 저잡음 증폭기)

  • Kim, Sung-Chan;An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.48-53
    • /
    • 2008
  • In this paper, we developed the MMIC low noise amplifier using 100 nm metamorphic HEMTs technology in combination with coplanar circuit topology for 94 GHz applications. The $100nm\times60{\mu}m$ MHEMT devices for the MMIC LNA exhibited DC characteristics with a drain current density of 655 mA/mm, an extrinsic transconductance of 720 mS/mm. The current gain cutoff frequency $(f_T)$ and maximum oscillation frequency $(f_{max})$ were 195 GHz and 305 GHz, respectively. The realized MMIC LNA represented $S_{21}$ gain of 14.8 dB and noise figure of 4.6 dB at 94 GHz with an over-all chip size of $1.8mm\times1.48mm$.

Design of $2{\times}1$ Array Antenna Using Stack Structure for IEEE 802.11a (적층구조를 이용한 IEEE 802.11a용 $2{\times}1$ 배열 안테나 설계)

  • Park, Jung-Ah;Bu, Chong-Bae;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.849-852
    • /
    • 2007
  • In this paper, the high gain and the broadband microstrip patch antenna, which is applicable to 5 GHz band wireless LAN, is designed in order to integrate IEEE 802.11a's detailed standards($a:5.15{\sim}5.25$, $b:5.25{\sim}5.35$, $c:5.725{\sim}5.875$ [GHz]). Designed patch antenna has settled resonance frequency by insert substance(polyurethane: ${\varepsilon}_r=6.5$) between the separated parasitic patch and radiation patch for the purpose of miniaturize. And the form (${\varepsilon}_r=1.03$) were to fix the separated radiation patch and ground plans by air. Designed frequency bandwidth(VSWR 2:1) of the antenna showed broadband characteristic of $4.9[GHz]{\sim}6.1[GHz]$ to about 1.2[GHz]. Also the E-plan and H-plan profit 12[dBi] above, the 3[dB] beamwidth showed the characteristic over the E-plan $30^{\circ}$ and H-plan $60^{\circ}$ to be improved.

  • PDF

Design and Fabrication of a Broadband RF Module for 2.4GHz Band Applications (2.4GHz 대역에서의 응용을 위한 광대역 RF모듈 설계 및 제작)

  • Yang Doo-Yeong;Kang Bong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a broadband RF module is designed and tested for 2.4GHz band applications. The RF module is composed of a low noise amplifier (LNA) with a three stage amplifier, a single ended gate mixer, matching circuits, a hairpin line band pass filter and a Chebyshev low pass filter to convert the radio frequency (RF) into the intermediate frequency (IF). The LNA has a high gain and stability, and the single ended gate mixer has a high conversion gain and wide dynamic range. In the analysis of the broadband RF module, the composite harmonic balance technique is used to analyze the operating characteristics of an RF module circuit. The RF module has a 55.2dB conversion gain with a 1.54dB low noise figure, $-120{\sim}-60dBm$ wide RF power dynamic range, -60dBm low harmonic spectrum and a good isolation factor among the RF, IF, and local oscillator (LO) ports.

  • PDF

A 60GHz Active Phase Shifter with 65nm CMOS Switching-Amplifiers (65nm CMOS 스위칭-증폭기를 이용한 60GHz 능동위상변화기 설계)

  • Choi, Seung-Ho;Lee, Kook-Joo;Choi, Jung-Han;Kim, Moon-Il
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.232-235
    • /
    • 2010
  • A 60GHz active phase shifter with 65nm CMOS is presented by replacing passive switches in switched-line type phase shifter with active ones. Active-switch phase shifter is composed of active-switch blocks and passive delay network blocks. The active-switch phase shifter design is compact compare with the conventional vector-sum phase shifter. Active-switch blocks are designed to accomplish required input and output impedances whose requirements are different whether the switch is on or off. And passive delay network blocks are composed of lumped L,C instead of normal microstrip line to reduce the size of the circuit. An 1-bit phase shifter is fabricated by TSMC 65nm CMOS technology and measurement results present -4dB average insertion loss and 120 degree phase shift at 65GHz.