• Title/Summary/Keyword: 60 kHz bandwidth

Search Result 31, Processing Time 0.021 seconds

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

Multi-Channel Analog Front-End for Auditory Nerve Signal Detection (청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드)

  • Cheon, Ji-Min;Lim, Seung-Hyun;Lee, Dong-Myung;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.60-68
    • /
    • 2010
  • In case of sensorineural hearing loss, auditory perception can be activated by electrical stimulation of the nervous system via electrode implanted into the cochlea or auditory nerve. Since the tonotopic map of the human auditory nerve has not been definitively identified, the recording of auditory nerve signal with microelectrode is desirable for determining the tonotopic map. This paper proposes the multi-channel analog front-end for auditory nerve signal detection. A channel of the proposed analog front-end consists of an AC coupling circuit, a low-power 4th-order Gm-C LPF, and a single-slope ADC. The AC coupling circuit transfers only AC signal while it blocks DC signal level. Considering the bandwidth of the auditory signal, the Gm-C LPF is designed with OTAs adopting floating-gate technique. For the channel-parallel ADC structure, the single-slope ADC is used because it occupies the small silicon area. Experimental results shows that the AC coupling circuit and LPF have the bandwidth of 100 Hz - 6.95 kHz and the ADC has the effective resolution of 7.7 bits. The power consumption per a channel is $12\;{\mu}W$, the power supply is 3.0 V, and the core area is $2.6\;mm\;{\times}\;3.7\;mm$. The proposed analog front-end was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Low Noise and Low Power IC Using Opamp Sharing Technique for Capacitive Micro-Sensor Sensing Platform (증폭기 공유 기법을 이용한 저전력 저잡음 용량형 센서용 신호 처리 IC)

  • Park, Yunjong;Kim, Choul-Young;Jung, Bang Chul;Yoo, Hoyoung;Ko, Hyoungho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • This paper describes the low noise and low power IC using the opamp sharing technique for the capacitive micro-sensor sensing platform. The proposed IC reduces noise using correlated double sampling (CDS) and reduces power consumption using the opamp sharing technique. The IC is designed to be fully programmable, and can be digitally controlled by serial peripheral interface (SPI). The power consumption and the integrated input referred noise are 1.02 mW from a 3.3 V supply voltage and $0.164aF_{RMS}$ with a bandwidth of 400 Hz. The capacitive sensitivity, the input-output linearity and the figure of merits (FoM) are 2.5 mV/fF, 2.46 %FSO, and 8.4, respectively.

60 GHz Optical Carrier Generator using Quasi-Velocity-Matching Technique (Quasi-Velocity-Matching물 이용한 60 GHz 광캐리어 발생기)

  • Kim, W.K.;Yang, W.S.;Lee, H.M.;Lee, H.Y.;Jeong, W.J.;Kwon, S.W.
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.181-185
    • /
    • 2006
  • A novel 60GHz optical carrier generator with a polarization domain-inverted structure is suggested and is demonstrated. The two arms of the Mach-Zehnder optical waveguide are periodically poled for quasi-phase velocity matching between the optical wave at 1550nm and the RF wave at 30 GHz. The center frequency of band-pass modulation and the 3 dB bandwidth of the fabricated modulator were measured to be 30.3 GHz and 5.1 GHz, respectively. Sub-carriers with the frequency difference of 60GHz waeregenerated under appropriate DC biac voltage application while the carrier was suppressed to lead to the power ratio between the modulated sub-carrier and the suppressed fundamental carrier of 28 dB, which proves that double sideband- suppressed carrier(DSB-SC) operation can be realized by the suggested single device.

A 12-Bit 2nd-order Noise-Shaping D/A Converter (12-Bit 2차 Noise-Shaping D/A 변환기)

  • 김대정;김성준;박재진;정덕균;김원찬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.98-107
    • /
    • 1993
  • This paper describes a design of a multi-bit oversampling noise-shaping D/A converter which achieves a resolution of 12 bits using oversampling technique. In the architecture the essential block which determines the whole accuracy is the analog internal D/A converter, and the designed charge-integration internal D/A converter adopts a differential structure in order to minimize the reduction of the resolution due to process variation. As the proposed circuit is driven by signal clocks which contains the information of the data variation from the noise-shaping coder, it minimizes the disadvantage of a charge-integration circuit in the time axis. In order to verify the circuit, it was integrated with the active area of 950$\times$650${\mu}m^{2}$ in a double metal 1.5-$\mu$m CMOS process, and testified that it can achieve a S/N ratio of 75 dB and a S/(N+D) ratio of 60 dB for the signal bandwidth of 9.6 kHz by the measurement with a spectrum analyzer.

  • PDF

Design of Boost Converter PFC IC for Unity Power Factor Achievement (단일 역률 달성을 위한 Boost Converter용 PFC IC 설계)

  • Jeon, In-Sun;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Jo, Hyo-Mun;Lee, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.60-67
    • /
    • 2010
  • We designed Average Current Control PFC IC which has make the average value of boost inductor current became the shape of sine wave. Designed IC has fixed frequency of 75kHz to meet EMI standard requirement. And also RC compensation loop has been designed into the error amp and the current amp, in order that it has wide bandwidth for high speed control. And we use the oscillator which generates by square wave and triangle wave, and add to UVLO, OVP, OCP, TSD which is in order to operate stability. We simulated by using Spectre of Cadence to verify the unity power factor function and various protection circuits and fabricated in a $1{\mu}m$ High Voltage(20V) CMOS process.

A Study on Single-bit Feedback Multi-bit Sigma Delta A/D converter for improving nonlinearity

  • Kim, Hwa-Young;Ryu, Jang-Woo;Jung, Min-Chul;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.57-60
    • /
    • 2004
  • This paper presents multibit Sigma-Delta ADC using Leslie-Singh Structure to Improve nonlinearity of feedback loop. 4-bit flash ADC for multibit Quantization in Sigma Delta modulator offers the following advantages such as lower quantization noise, more accurate white-noise level and more stability over single quantization. For the feedback paths consisting of DAC, the DAC element should have a high matching requirement in order to maintain the linearity performance which can be obtained by the modulator with a multibit quantizer. Thus a Sigma-Delta ADC usually adds the dynamic element matching digital circuit within feedback loop. It occurs complexity of Sigma-Delta Circuit and increase of power dissipation. In this paper using the Leslie-Singh Structure for improving nonliearity of ADC. This structure operate at low oversampling ratio but is difficult to achieve high resolution. So in this paper propose improving loop filter for single-bit feedback multi-bit quantization Sigma-Delta ADC. It obtained 94.3dB signal to noise ratio over 615kHz bandwidth, and 62mW power dissipation at a sampling frequency of 19.6MHz. This Sigma Delta ADC is fabricated in 0.25um CMOS technology with 2.5V supply voltage.

  • PDF

Sound Enhancement of low Sample rate Audio Using LMS in DWT Domain (DWT영역에서 LMS를 이용한 저 샘플링 비율 오디오 신호의 음질 향상)

  • 백수진;윤원중;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • In order to mitigate the problems in storage space and network bandwidth for the full CD quality audio, current digital audio is always restricted by sampling rate and bandwidth. This restriction normally results in low sample rate audio or calls for the data compression scheme such as MP3. However, they can only reproduce a lower frequency range than a regular CD quality because of the Nyquist sampling theory. Consequently they lose rich spatial information embedded in high frequency. The propose of this paper is to propose efficient high frequency enhancement of low sample rate audio using n adaptive filtering and DWT analysis and synthesis. The proposed algorithm uses the LMS adaptive algorithm to estimate the missing high frequency contents in DWT domain and it then reconstructs the spectrally enhanced audio by using the DWT synthesis procedure. Several experiments with real speech and audio are performed and compared with other algorithm. From the experimental results of spectrogram and sonic test, we confirm that the proposed algorithm outperforms the other algorithm and reasonably works well for the most of audio cases.

Real-time Implementation or AMR-WB Speech Coder Using TMS320C5509 DSP (TMS320C5509 DSP를 이용한 AMR-WB 음성부호화기의 실시간 구현)

  • Choi Song-ln;Jee Deock-Gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • The adaptive multirate wideband (AMR-WB) speech coder has an extended audio bandwidth from 50 Hz to 7 kBz and operates on nine speech coding bit-rates from 6.6 to 23.85 kbit/s. In this Paper, we present the real-time implementation of AMR-WB speech coder using 16bit fixed-point TMS320C5509 that has dual MAC units. Firstly, We implemented AMR-WB speech coder in C 1anguage level using intrinsics, and then performed optimization in assembly language. The computational complexity of the implemented AMR-WB coder at 23.85 kbit/s is 42.9 Mclocks. And this coder needs the program memory of 15.1 kwords, data ROM of 9.2 kwords and data RAM of 13.9 kwords.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.