• Title/Summary/Keyword: 3T3-L1 adipocyte differentiation

Search Result 272, Processing Time 0.024 seconds

Inhibitory Effects and Molecular Mechanism of Adipocyte Differentiation by Rosae laevigata Fructus Ethanol Extracs (금앵자 에탄올 추출물에 의한 3T3-L1 지방세포의 분화억제 효과와 그 메커니즘 규명)

  • Jeong, Hyun Young;Jeong, In Kyo;Nam, So Yeon;Yun, Hee Jung;Kim, Byung Woo;Kwon, Hyun Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • Obesity is caused by excess accumulation of body fat and contributes to various pathological disorders such as diabetes, hypertension, cardiovascular disease, and cancer. In this study, we investigated the effect of a 30% ethanol extract of Fructus Rosae laevigata (RLE) on adipogenesis in 3T3-L1 adipocytes, measured by triglyceride accumulation and expression of adipogenesis-related transcription factors during differentiation of pre-adipocytes into adipocytes. RLE decreased the intracellular triglyceride contents (assessed by Oil Red-O staining) in a dose-dependent manner. It also downregulated the expression of adipogenic transcription factors and inhibited cell proliferation during the mitotic clonal expansion phase of adipocyte differentiation by inducing G1 phase arrest. We investigated the alterations in the levels of G1 phase arrest-related proteins. The expression of p21 protein significantly increased, while the levels of Cyclin E, Cdk2, and phospho-Rb decreased in a dose-dependent manner in 3T3-L1 cells treated with RLE. These results suggest that RLE inhibits the differentiation of 3T3-L1 adipocytes by suppressing the expression of adipogenic transcription factors and inducing G1 phase arrest in the early stages of adipocyte differentiation.

The Effects of Dai-saiko-to (Da-Chai-Hu-Tang) on 3T3-L1 Preadipocytes and High-Fat Diet-Induced Obese Mice (대시호탕(大柴胡湯)이 3T3-L1 지방전구세포와 고지방식이 유도 비만쥐에 미치는 영향)

  • Min, Deul Le;Park, Eun Jung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Objectives This experimental study was designed to investigate the effects of Dai-saiko-to (DSH) on differentiation of 3T3-L1 preadipocytes and body weight, serum lipid levels in high-fat diet-induced obese mice. Materials and Methods Cells were incubated with DSH at an indicated concentration (0.01-1 mg/ml) for 24h, then the growth rate was assessed by MTS assay. 3T3-L1 preadipocytes were incubated in DMEM for 2 days with the indicated concentrations of DSH. On Day 6, the cells were fixed and the cellular lipid contents were assessed by Oil-Red-O staining. The expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) as adipocyte-specific proteins were determined by real time RT-PCR and western blotting. Four-weeks old mice (wild-type C57BL/6) were used for all experiments. Body weight gain and serum lipid levels were measured in the obesity-induced mice. Results DSH did not show toxicity even at the concentration of 1 mg/ml and DSH significantly inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. Also, DSH significantly reduced the expressions of $PPAR{\gamma}$ and $C/EBP{\alpha}$ in a dose-dependent manner. Furthermore, DSH significantly reduced body weight gain, serum glucose, total cholesterol and LDL-cholesterol contents in obesity-induced mice. Conclusions These results demonstrated that DSH inhibited 3T3-L1 preadipocyte differentiations and high-fat diet-induced obesity in mice.

Effect of Bambusae Caulis in Liquamen on the Synthesis of Basement Membrane Proteins during Proliferation and Differentiation of 3T3-L 1 Cells (죽역이 3T3-L1 세포의 증식 및 분화시 기저영 단백질 합성에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1315-1320
    • /
    • 2003
  • The purpose of this research was to investigate effects of Bambusae Caulis in Liquamen (BCL) on the synthesis of basement membrane proteins during proliferation and differentiation of 3T3-L1 cells. BCL has been used to relieve the cough and asthma, and remove phlegm in traditional oriental medicines. In recent years. it was studied for its antiinflammatory, antiallergenic. immune-modulating and anticarcinogenic capabilities. We have previously observed that glycyrrhizin stimulates the adipose conversion of 3T3-L1 cells. To investigate effects of BCL on the basement membrane proteins during proliferation and differentiation of 3T3-L1 cells, we have analyzed synthetic amounts of basement membrane components such as type IV collagen and BM40. BCL stimulated the synthesis and secretion of type IV collagen from both 3T3-L1 preadipocytes and adipocytes. The synthesis and secretion of BM40 was not affected by BCL. The continuous addition of BCL markedly stimulated cell growth and increased cell density. These results suggest an important role for type IV collagen in adipocyte differentiation.

Anti-Obesity Effects of Red Beet Extract

  • Song, Hwan
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 2021
  • Obesity is caused by the accumulation of triglycerides in adipocytes by the differentiation and lipid synthesis process of pre-adipocytes, and excessive accumulation of adipocytes by the activated Adipogenesis process within the differentiated cells. Therefore, inhibiting the differentiation of adipocyte cells or controlling the adipogenesis process is known as an effective treatment method for obesity. This study evaluates the inhibition of Red beet root extract on pancreatic lipase and pre-adipocyte cell differentiation. Also it evaluates the Red beet root extract activities on C/EBP-𝛼,𝛽, and PPAR-𝛄. The experiments proved that the Red beet root extract inhibits pancreatic lipase by concentration dependency. Further, in 3T3-L1 inhabitation experiment, it was found Red beet root extract inhibited adipocyte formation. Red beet root extract also inhibits the expression of C/EBP-𝛼, C/EBP-𝛽, and PPAR-𝛾 which effect the process of adipocytic differentiation. We therefore concluded that RBE has a high potential to further studies on anti-obesity effect.

Inhibitory effect of ethanolic extract of Abeliophyllum distichum leaf on 3T3-L1 adipocyte differentiation

  • Thomas, Shalom Sara;Eom, Ji;Sung, Nak-Yun;Kim, Dong-Sub;Cha, Youn-Soo;Kim, Kyung-Ah
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.555-567
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Abeliophyllum distichum is a plant endemic to Korea, containing several beneficial natural compounds. This study investigated the effect of A. distichum leaf extract (ALE) on adipocyte differentiation. MATERIALS/METHODS: The cytotoxic effect of ALE was analyzed using cell viability assay. 3T3-L1 preadipocytes were differentiated using induction media in the presence or absence of ALE. Lipid accumulation was confirmed using Oil Red O staining. The mRNA expression of adipogenic markers was measured using RT-PCR, and the protein expressions of mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor gamma (PPAR𝛾) were measured using western blot. Cell proliferation was measured by calculating the incorporation of Bromodeoxyuridine (BrdU) into DNA. RESULTS: ALE reduced lipid accumulation in differentiated adipocytes, as indicated by Oil Red O staining and triglyceride assays. Treatment with ALE decreased the gene expression of adipogenic markers such as Ppar𝛾, CCAAT/enhancer binding protein alpha (C/ebp𝛼), lipoprotein lipase, adipocyte protein-2, acetyl-CoA carboxylase, and fatty acid synthase. Also, the protein expression of PPAR𝛄 was reduced by ALE. Treating the cells with ALE at different time points revealed that the inhibitory effect of ALE on adipogenesis is higher in the early period treatment than in the terminal period. Furthermore, ALE inhibited adipocyte differentiation by reducing the early phase of adipogenesis and mitotic clonal expansion. This was indicated by the lower number of cells in the Synthesis phase of the cell cycle (labeled using BrdU assay) and a decrease in the expression of early adipogenic transcription factors such as C/ebp𝛽 and C/ebp𝛿. ALE suppressed the phosphorylation of MAPK, confirming that the effect of ALE was through the suppression of early phase of adipogenesis. CONCLUSIONS: Altogether, the results of the present study revealed that ALE inhibits lipid accumulation and may be a potential agent for managing obesity.

Adipogenic function of tetranectin mediated by enhancing mitotic clonal expansion via ERK signaling

  • Go, Seulgi;Park, Jihyun;Rahman, Safikur;Jin, Juno;Choi, Inho;Kim, Jihoe
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.374-379
    • /
    • 2021
  • Tetranectin (TN), an adipogenic serum protein, enhances adipocyte differentiation, however, its functional mechanism has yet to be elucidated. In the present study, we investigated the adipogenic function of TN by using medium containing TN-depleted fetal bovine serum (TN-del-FBS) and recombinant mouse TN (mTN). The adipocyte differentiation of 3T3-L1 cells was significantly enhanced by mTN supplementation essentially at differentiation induction, which indicated a potential role of the protein in the early differentiation phase. The adipogenic effect of mTN was more significant with insulin in the differentiation induction cocktail, implicating their close functional relationship. mTN enhanced not only the proliferation of growing cells, but also mitotic clonal expansion (MCE) that is a prerequisite for adipocyte differentiation in the early phase. Consistently, mTN increased the phosphorylation of ERK in the early phase of adipocyte differentiation. Results of this study demonstrate that the adipogenic function of mTN is mediated by enhancing MCE via ERK signaling.

Effects of Selenate on Adipocyte Differentiation and the Expression of Selenoproteins in 3T3-L1 Cells (3T3-L1세포에서 selenate의 처리가 세포의 분화와 selenoprotein의 발현에 미치는 영향)

  • Park, Seol Hui;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1085-1091
    • /
    • 2014
  • The purpose of this study was to determine the effect of selenate on adipocyte differentiation and to identify genes involved in the modulation of adipogenesis in 3T3-L1 cells. To test the effect of selenate on adipocyte differentiation, adipogenesis was induced in cells using various concentrations ($0-100{\mu}M$) of selenate. Various phases of adipogenesis were induced: postconfluent (PC), early phase (EP, d0-d2), postmitotic growth arrest (PM, d2-d4), and all period (AP). The PC cells exposed to selenate for 24 h displayed dose-dependent inhibition of intracellular lipid droplet accumulation on day 6 of adipogenesis. Two days of selenate treatment at EP or AP inhibited adipogenesis, with an approximately 20-80% reduction in lipid accumulation compared to that of a control (p<0.05). When preadipocytes were exposed to selenate during the PM period, the antiadipogenic effect of selenate was attenuated. Two types of selenoprotein genes (Seps1 and Sepp1) were up-regulated by the selenate treatment during mitotic clonal expansion, whereas these genes were down-regulated during PM growth arrest (p<0.05). The findings demonstrate the antiadipogenic function of selenate and the possible involvement of Sepp1 and Seps1 genes in selenate-inhibited adipogenesis in 3T3-L1 cells.

AMP-activated Kinase Regulates Adipocyte Differentiation Process in 3T3-L1 Adipocytes Treated with Selenium (AMP-activated protein kinase가 셀레늄으로 처리된 3T3-L1 지방세포의 분화과정 억제에 관한 연구)

  • Park, Song-Yi;Hwang, Jin-Taek;Lee, Yun-Kyoung;Kim, Young-Min;Park, Ock-Jin
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Selenium was investigated using human origin preadipocytes to see whether it possesses preventive or therapeutic effects for obesity. Unveiling the potential of selenium in the reduction of adipogenesis can help predict the therapeutic capabilities of selenium in obesity. In the present study, the molecular mechanism of the inhibition of adipogenesis by selenium was explored to unravel the involvement of the AMP-activated protein kinase. There is emerging evidence that AMPK, a sensor of cellular energy status, is a possible molecular target of controlling adipocyte differentiation on the basis of discovery that AMPK is responsible for the major metabolic responses to exercise, and integration of nutritional and hormonal signals to modulate feeding behavior or energy expenditure in the hypothalamus. Treatment of selenium resulted in inhibition of the adipocyte differentiation process and induction of mature apoptosis in 3T3-L1 adipocytes. We hypothesized that selenium may exert anti-adipogenic potential though modulating AMPK. We have found that selenium significantly activated AMPK and phosphorylated its substrate acetyl-CoA carboxylase ($ACC-serine^{79}$) during the inhibitory process of adipocytes. Also, the inhibition process of adipocyte differentiation by selenium was comparable to either reveratrol or a synthetic AMPK activator, AICAR (5-aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside). To evaluate the involvement of AMPK in anti-lipogensis, we applied AICAR and Compound C, an AMPK inhibitor, to 3T3-L1-adipocytes and found that AMPK is required for the adipocyte differentiation blocking process. These results suggest that selenium has a potential to control adipogenesis and that this effect is mediated by AMPK, an essential kinase for both inhibition of adipocyte differentiation and apoptosis of mature adipocytes.

Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes

  • Park, Mi-Young;Seo, Dong-Won;Lee, Jin-Young;Sung, Mi-Kyung;Lee, Young-Min;Jang, Hwan-Hee;Choi, Hae-Yeon;Kim, Jae-Hyn;Park, Dong-Sik
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.192-197
    • /
    • 2011
  • The dietary intake of whole grains is known to reduce the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. To investigate whether there are anti-adipogenic activities in various Korean cereals, we assessed water extracts of nine cereals. The results showed that treatment of 3T3-L1 adipocytes with Sorghum bicolor L. Moench, Setaria italica Beauvois, or Panicum miliaceum L. extract significantly inhibited adipocyte differentiation, as determined by measuring oil red-O staining, triglyceride accumulation, and glycerol 3-phosphate dehydrogenase activity. Among the nine cereals, P. miliaceum L. showed the highest anti-adipogenic activity. The effects of P. miliaceum L. on mRNA expression of peroxisome proliferator-activated receptor-${\gamma}$, sterol regulatory element-binding protein 1, and the CCAAT/enhancer binding protein-${\alpha}$ were evaluated revealing that the extract significantly decreased the expression of these genes in a dose-dependent manner. Moreover, P. miliaceum L. extract changed the ratio of monounsaturated fatty acids to saturated fatty acids in adipocytes, which is related to biological activity and cell characteristics. These results suggest that some cereals efficiently suppress adipogenesis in 3T3-L1 adipocytes. In particular, the effect of P. miliaceum L. on adipocyte differentiation is associated with the downregulation of adipogenic genes and fatty acid accumulation in adipocytes.

Suppressive Effects of an Ishige okamurae extract on 3T3-L1 Preadipocyte Differentiation

  • Cha, Sun-Yeong;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.451-459
    • /
    • 2013
  • The biological activity of tissue specific stem cell is under the control of their specific microenvironment and the exogenous chemicals derived from digestive tract can be one of the constructing factors of that. It is suggested that the extract of brown algae Ishige okamurae has antioxidant-, apoptosis induction-, and antiinflammatory-effects. On the other hand, a few studies have shown that antioxidant assist inhibition of accumulation of fat. So we studied the effect of the extract of I. okamura on the cellular activity and differentiation of 3T3-L1 preadipocyte to adipose cell. The viability of cell was analyzed using 3-[4,5-dimethylthiazo-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Adipogenesis of 3T3-L1 cell was analyzed after induction in the induction medium containing the I. okamurae extract. The cellular activity was high compared with the vehicle and 0.05 mM caffeine in all groups of I. okamurae extract treated cells. The extract of I. okamura inhibited accumulation of lipids in 10 and $50{\mu}g/ml$. The expression of the marker genes for adipocyte differentiation coincided with cytochemical results. These results suggest that the extract of I. okamurae increases the cellular viability of adipose precursor cells. On the other hand, it suppresses the differentiation of preadipocyte to adipocyte and accumulation of lipids in concentration-dependent manners. It may be possible that the major component of the extract can be applied in the control of adipose tissuegenesis.