Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.10.1085

Effects of Selenate on Adipocyte Differentiation and the Expression of Selenoproteins in 3T3-L1 Cells  

Park, Seol Hui (School of Medicine, Kyung Hee University)
Moon, Yang Soo (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology)
Publication Information
Journal of Life Science / v.24, no.10, 2014 , pp. 1085-1091 More about this Journal
Abstract
The purpose of this study was to determine the effect of selenate on adipocyte differentiation and to identify genes involved in the modulation of adipogenesis in 3T3-L1 cells. To test the effect of selenate on adipocyte differentiation, adipogenesis was induced in cells using various concentrations ($0-100{\mu}M$) of selenate. Various phases of adipogenesis were induced: postconfluent (PC), early phase (EP, d0-d2), postmitotic growth arrest (PM, d2-d4), and all period (AP). The PC cells exposed to selenate for 24 h displayed dose-dependent inhibition of intracellular lipid droplet accumulation on day 6 of adipogenesis. Two days of selenate treatment at EP or AP inhibited adipogenesis, with an approximately 20-80% reduction in lipid accumulation compared to that of a control (p<0.05). When preadipocytes were exposed to selenate during the PM period, the antiadipogenic effect of selenate was attenuated. Two types of selenoprotein genes (Seps1 and Sepp1) were up-regulated by the selenate treatment during mitotic clonal expansion, whereas these genes were down-regulated during PM growth arrest (p<0.05). The findings demonstrate the antiadipogenic function of selenate and the possible involvement of Sepp1 and Seps1 genes in selenate-inhibited adipogenesis in 3T3-L1 cells.
Keywords
3T3-L1 cells; adipocyte differentiation; gene expression; selenate; selenoprotein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berg, E. A., Wu, J. Y., Campbell, L., Kagey, M. and Stapleton, S. R. 1995. Insulin-like effects of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats. Biochimie 77, 919-924.   DOI   ScienceOn
2 Bock, B. C., Kanarek, R. B. and Aprille, J. R. 1995. Mineral content of the diet alters sucrose-induced obesity in rats. Physiol Behav 57, 659-668.   DOI   ScienceOn
3 Burk, R. F. and Lane, J. M. 1979. Ethane production and liver necrosis in rats after administration of drugs and other chemicals. Toxicol Appl Pharmacol 50, 467-478.   DOI   ScienceOn
4 Duncan, D. B. 1995. Multiple range and multiple F test. Biometrics 11, 1-42.
5 Ezaki, O. 1990. The insulin-like effects of selenate in rat adipocytes. J Biol Chem 265, 1124-1128.
6 Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigó, R. and Gladyshev, V. N. 2003. Characterization of mammalian selenoproteomes. Science 300, 1439-1443.   DOI   ScienceOn
7 Kim, C. Y., Kim, G. N., Wiacek, J. L., Chen, C. Y. and Kim, K. H. 2012 Selenate inhibits adipogenesis through induction of transforming growth factor-${\beta}$1 (TGF-${\beta}$1) signaling. Biochem Biophys Res Commun 426, 551-557.   DOI   ScienceOn
8 Kim, C. Y. and Kim, K. H. 2013 Dexamethasone-induced selenoprotein S degradation is required for adipogenesis. J Lipid Res 54, 2069-2082.   DOI   ScienceOn
9 Kim, K. H., Gao, Y., Walder, K., Collier, G. R., Skelton, J. and Kissebah, A. H. 2007. SEPS1 protects RAW264.7 cells from pharmacological ER stress agent-induced apoptosis. Biochem Biophys Res Commun 354, 127-132.   DOI   ScienceOn
10 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}$CT method. Methods 25, 402-408.   DOI   ScienceOn
11 Lu, J. and Holmgren, A. 2009. Selenoproteins. J Biol Chem 284, 723-727.   DOI   ScienceOn
12 McNeill, J. H., Delgatty, H. L. and Battell, M. L. 1991. Insulinlike effects of sodium selenate in streptozocin-induced diabetic rats. Diabetes 40, 1675-1678.   DOI
13 Ozcan, U., Cao, Q., Yilmaz, E., Lee, A. H., Iwakoshi, N. N., Ozdelen, E., Tuncman, G., Gorgün, C., Glimcher, L. H. and Hotamisligil, G. S. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2diabetes. Science 306, 457-461.   DOI   ScienceOn
14 Papp, L. V., Lu, J., Holmgren, A. and Khanna, K. K. 2007. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9, 775-806.   DOI   ScienceOn
15 Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G. 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590.   DOI   ScienceOn
16 Ye, Y., Shibata, Y., Yun, C., Ron, D. and Rapoport, T. A. 2004. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841-847.   DOI   ScienceOn
17 Schrauzer, G. N. 1987. Effects of selenium antagonists on cancer susceptibility: new aspects of chronic heavy metal toxicity. J UOEH 20, S208-215.
18 Sharma, N. K, Das, S. K., Mondal, A. K., Hackney, O. G., Chu, W. S, Kern, P. A., Rasouli, N., Spencer, H. J., Yao-Borengasser, A. and Elbein, S. C. 2008. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93, 4532-4541.   DOI
19 van der Kallen, C. J., van Greevenbroek, M. M., Stehouwer, C. D. and Schalkwijk, C. G. 2009. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis 14, 1424-1434.   DOI   ScienceOn
20 Zhang, Y. and Chen, X. 2011. Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab 300, E77-85.   DOI   ScienceOn
21 Gao, Y., Feng, H. C, Walder, K., Bolton, K., Sunderland, T., Bishara, N., Quick, M., Kantham, L. and Collier, G. R. 2004. Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress - SelS is a novel glucose- regulated protein. FEBS Lett 563, 185-190.   DOI   ScienceOn